
IBM Informix
JDBC Driver
Programmer’s Guide
UNIX and Windows
Informix Dynamic Server, Version 7.x
Informix Dynamic Server, Workgroup and Developer Editions, Version 7.x
Informix Dynamic Server with Advanced Decision Support and Extended Parallel Options, Version 8.x
Informix Dynamic Server with Universal Data Option, Version 9.x
INFORMIX-OnLine Dynamic Server, Version 5.x
INFORMIX-SE, Version 5.x
INFORMIX-SE, Version 7.2x
Version 1.4
August 2001
Part No. 000-5343A

ii IBM Informix JDBC D
© Copyright International Business Machines Corporation 2001. All rights reserved.

Trademarks

AIX; DB2; DB2 Universal Database; Distributed Relational Database Architecture; NUMA-Q; OS/2, OS/390, and
OS/400; IBM Informix ; C-ISAM ; Foundation.2000TM; IBM Informix 4GL; IBM Informix DataBlade Module;
Client SDKTM; CloudscapeTM; CloudsyncTM; IBM Informix Connect; IBM Informix Driver for JDBC; Dynamic
ConnectTM; IBM Informix Dynamic Scalable ArchitectureTM (DSA); IBM Informix Dynamic ServerTM; IBM
Informix Enterprise Gateway Manager (Enterprise Gateway Manager); IBM Informix Extended Parallel
ServerTM; i. Financial ServicesTM; J/FoundationTM; MaxConnectTM; Object TranslatorTM; Red Brick
Decision ServerTM; IBM Informix SE; IBM Informix SQL; InformiXMLTM; RedBack ; SystemBuilderTM; U2TM;
UniData ; UniVerse ; wintegrate are trademarks or registered trademarks of International Business
Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States and other countries.

Windows, Windows NT, and Excel are either registered trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open
Company Limited.

Other company, product, and service names used in this publication may be trademarks or service marks of
others.

Documentation Team: June Smith, Juliet Shackell, Oakland Editing & Production
river Programmer’s Guide

Table of Contents

Table of
Contents
Introduction
In This Introduction 3
About This Manual 3

Organization of This Manual 3
Material Not Covered 4
Types of Users 4
Software Dependencies 4
Assumptions About Your Locale. 5

Documentation Conventions 5
Typographical Conventions 6
Icon Conventions 7

Additional Documentation 8
Printed Documentation 8
On-Line Documentation 9
Vendor-Specific Documentation 9

Compliance with Industry Standards 10
Informix Welcomes Your Comments 10

Chapter 1 Getting Started
In This Chapter 1-3
What Is JDBC? 1-3
What Is a JDBC Driver? 1-5
Overview of Informix JDBC Driver 1-6
Installing the Driver 1-7

Interactive Installation 1-7
Silent Installation 1-10

Uninstalling the Driver 1-12
Using the Driver in an Application 1-13
Using the Driver in an Applet 1-14

iv IBM In
Chapter 2 Programming with Informix JDBC Driver
In This Chapter 2-3
Establishing a Connection 2-3

Loading Informix JDBC Driver 2-4
Creating a Connection 2-4

Accessing Database Metadata 2-14
Querying the Database 2-15

Manipulating Informix Large Object Data Types 2-15
Manipulating Informix INTERVAL Data Types 2-21
Manipulating Other Data Types. 2-23
Informix-Specific Information About Querying a Database . . 2-23
Example of Sending a Query to an Informix Database 2-25
Escape Syntax 2-26

Mapping Data Types 2-26
Mapping Between Informix and JDBC Data Types 2-27
Supported ResultSet.getXXX() Methods 2-29

Handling Errors 2-31
Using the SQLException Class 2-31
Retrieving Informix Error Message Text 2-32

Internationalization 2-33
JDK 1.1 and 1.2 Internationalization Support 2-33
Support for Informix GLS Variables 2-33
Support for End-User Formats 2-34
Precedence Rules Regarding DATE Value End-User Formats . 2-41
Support for Code Set Conversion 2-42

Handling Transactions 2-48
Other Informix Extensions to the JDBC API 2-49

Using the Informix SERIAL and SERIAL8 Data Types 2-49
Obtaining Driver Version Information 2-50

Using an HTTP Proxy Server 2-51
Restrictions and Limitations 2-53
formix JDBC Driver Programmer’s Guide

Chapter 3 Troubleshooting
In This Chapter 3-3
Debugging Your JDBC API Program 3-3

Using the Debug Version of the Driver 3-3
Turning on Tracing 3-4

Performance Issues 3-5
Using the FET_BUF_SIZE Environment Variable 3-6
Memory Management of Large Objects 3-6
Reducing Network Traffic 3-8

Appendix A Sample Code Files

Glossary

Error Messages

Index
Table of Contents v

Introduction
Introduction

In This Introduction 3

About This Manual 3
Organization of This Manual 3
Material Not Covered 4
Types of Users 4
Software Dependencies 4
Assumptions About Your Locale 5

Documentation Conventions 5
Typographical Conventions 6
Icon Conventions 7

Comment Icons 7
Platform Icons 7

Additional Documentation 8
Printed Documentation 8
On-Line Documentation. 9
Vendor-Specific Documentation 9

Compliance with Industry Standards 10

Informix Welcomes Your Comments 10

2 IBM In
formix JDBC Driver Programmer’s Guide

In This Introduction
This Introduction provides an overview of the information in this manual
and describes the conventions it uses.

About This Manual
This guide describes how to install, load, and use Informix JDBC Driver to
connect to an Informix database from within a Java application or applet.

This section discusses the organization of the manual, the intended audience,
and the associated software products you must have to use Informix JDBC
Driver.

Organization of This Manual
This manual includes the following chapters:

■ Chapter 1, “Getting Started,” describes Informix JDBC Driver and the
JDBC application programming interface (API) in general. It provides
essential information for programmers to immediately start using
the product, such as instructions on how to install and load the
driver.

■ Chapter 2, “Programming with Informix JDBC Driver,” explains in
more detail the Informix-specific information needed to use Informix
JDBC Driver to connect to an Informix database. This information
includes how to create a connection to an Informix database, query
tables, and handle errors.

This chapter also explains the Informix-specific data types supported
in Informix JDBC Driver. This information includes how to map data
types.
Introduction 3

Material Not Covered
■ Chapter 3, “Troubleshooting,” provides troubleshooting tips to solve
programming errors and problems with the driver. It also describes
browser security issues when you use Informix JDBC Driver in a Java
applet.

■ Appendix A, “Sample Code Files,” lists examples referred to in the
guide.

■ A glossary of relevant terms and a list of error messages follow the
chapters, and an index directs you to areas of particular interest.

Material Not Covered
This guide does not describe all the interfaces, classes, and methods of the
JDBC API and does not provide detailed descriptions of how to use the JDBC
API to write Java applications that connect to Informix databases. The
examples in the guide provide enough information to show how to use
Informix JDBC Driver but do not provide an extensive description of the JDBC
API.

For more information about the JDBC API, visit the JavaSoft Web site at:

http://www.javasoft.com/products/jdk/1.1/docs/guide/jdbc/index.html

Types of Users
This guide is for Java programmers who use the JDBC API to connect to
Informix databases using Informix JDBC Driver. To use this guide, you should
know how to program in Java and, in particular, understand the classes and
methods of the JDBC API.

Software Dependencies
To use Informix JDBC Driver to connect to an Informix database, you must use
one of the following Informix database servers:

■ Informix Dynamic Server, Version 7.x

■ Informix Dynamic Server, Workgroup and Developer Editions,
Version 7.x
4 IBM Informix JDBC Driver Programmer’s Guide

Assumptions About Your Locale
■ Informix Dynamic Server with Advanced Decision Support and
Extended Parallel Options, Version 8.x

■ Informix Dynamic Server with Universal Data Option, Version 9.x

■ INFORMIX-OnLine Dynamic Server, Version 5.x

■ INFORMIX-SE, Version 5.x

■ INFORMIX-SE, Version 7.2x

You must also use Java Development Kit (JDK), Version 1.1.5 or later.

Assumptions About Your Locale
Informix products can support many languages, cultures, and code sets. All
culture-specific information is brought together in a single environment,
called a GLS (Global Language Support) locale.

The examples in this manual are written with the assumption that you are
using the default locale, en_us.8859-1. This locale supports U.S. English
format conventions for dates, times, and currency. In addition, this locale
supports the ISO 8859-1 code set, which includes the ASCII code set plus
many 8-bit characters such as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and
other considerations related to GLS locales, see the Informix Guide to GLS
Functionality.

Documentation Conventions
This section describes the conventions that this manual uses. These conven-
tions make it easier to gather information from this and other volumes in the
documentation set:

■ Typographical conventions

■ Icon conventions
Introduction 5

Typographical Conventions
Typographical Conventions
This manual uses the following conventions to introduce new terms, describe
command syntax, and so forth.

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Tip: The text and many of the examples in this manual show routine and data type
names in mixed lettercasing (uppercase and lowercase). Because Informix Dynamic
Server is case insensitive, you do not need to enter routine names exactly as shown:
you can use uppercase letters, lowercase letters, or any combination of the two.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics
italics
italics

Within text, new terms and emphasized words appear in italics.
Within syntax and code examples, variable values that you are
to specify appear in italics.

boldface
boldface

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

monospace
monospace

Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of product- or platform-specific
information.

➞ This symbol indicates a menu item. For example, “Choose
Tools➞ Options” means choose the Options item from the
Tools menu.
6 IBM Informix JDBC Driver Programmer’s Guide

Icon Conventions
Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Comment Icons

Comment icons identify three types of information, as the following table
describes. This information always appears in italics.

Platform Icons

Platform icons identify paragraphs that contain platform-specific
information.

Icon Label Description

Warning: Identifies paragraphs that contain vital instructions,
cautions, or critical information

Important: Identifies paragraphs that contain significant
information about the feature or operation that is
being described

Tip: Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described

Icon Description

Identifies information that is specific to the UNIX
environment.

Identifies information that is specific to the Windows
environment.

UNIX

Windows
Introduction 7

Additional Documentation
These icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ♦ symbol indicates the end of the platform-specific information.

Additional Documentation
This section describes the following parts of the documentation set:

■ Printed documentation

■ On-line documentation

■ Vendor-specific documentation

Printed Documentation
The following related Informix documents complement the information
in this manual:

■ If you have never used Structured Query Language (SQL), read the
Informix Guide to SQL: Tutorial. It provides a tutorial on SQL as it is
implemented by Informix products. It also describes the funda-
mental ideas and terminology for planning and implementing a
relational database.

■ A companion volume to the Tutorial, the Informix Guide to SQL:
Reference, includes details of the Informix system catalog tables,
describes Informix and common environment variables that you
should set, and describes the column data types that Informix
database servers support.

■ The Informix Guide to SQL: Syntax provides information about SQL
syntax as it is implemented by Informix products.

■ Informix Error Messages is useful if you do not want to look up your
error messages on-line.
8 IBM Informix JDBC Driver Programmer’s Guide

On-Line Documentation
On-Line Documentation
The Informix Answers OnLine CD allows you to print chapters or entire
books and perform full-text searches for information in specific books or
throughout the documentation set. You can install the documentation or
access it directly from the CD. For information about how to install, read, and
print on-line manuals, see the installation insert that accompanies Answers
OnLine. You can also obtain the same information on the Web at
http://www.informix.com/answers.

In addition to the Informix set of manuals, the following on-line files
supplement the information in this manual.

On-line files are located in $JDBCLOCATION/doc/release, where $JDBCLO-
CATION refers to the directory where you installed Informix JDBC Driver.♦

On-line files are located in %JDBCLOCATION%\doc\release, where
%JDBCLOCATION% refers to the directory where you installed Informix JDBC
Driver. ♦

Please examine these files because they contain vital information about
application and performance issues.

Vendor-Specific Documentation
For more information about the JDBC API, visit the JavaSoft Web site at:

http://www.javasoft.com/products/jdk/1.1/docs/guide/jdbc/index.html

On-Line File Purpose

JDBCREL.TXT The release notes describe any special actions required to
configure and use Informix JDBC Driver on your computer.
Additionally, this file contains information about any known
problems and their workarounds.

JDBCDOC.TXT The documentation notes describe features not covered in the
manuals or modified since publication.

UNIX

Windows
Introduction 9

Compliance with Industry Standards
Compliance with Industry Standards
The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. Informix SQL-based products are fully compliant
with SQL-92 Entry Level (published as ANSI X3.135-1992), which is identical
to ISO 9075:1992. In addition, many features of Informix database servers
comply with the SQL-92 Intermediate and Full Level and X/Open SQL CAE
(common applications environment) standards.

Informix Welcomes Your Comments
Let us know what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about any corrections or
clarifications that you would find useful. Include the following information:

■ The name and version of the manual you are using

■ Any comments you have about the manual

■ Your name, address, and phone number

Write to us at the following address:

Informix Software, Inc.
Technical Publications
300 Lakeside Dr., Suite 2700
Oakland, CA 94612

If you prefer to send electronic mail, our address is:

doc@informix.com

We appreciate your suggestions.
10 IBM Informix JDBC Driver Programmer’s Guide

1
Chapter
Getting Started
In This Chapter . 1-3

What Is JDBC? . 1-3

What Is a JDBC Driver? 1-5

Overview of Informix JDBC Driver 1-6

Installing the Driver 1-7
Interactive Installation 1-7
Silent Installation 1-10

Uninstalling the Driver 1-12

Using the Driver in an Application 1-13

Using the Driver in an Applet 1-14

1-2 IBM
 Informix JDBC Driver Programmer’s Guide

In This Chapter
This chapter provides an overview of Informix JDBC Driver and the JDBC API.
It includes the following sections:

■ “What Is JDBC?”

■ “What Is a JDBC Driver?”

■ “Overview of Informix JDBC Driver”

■ “Installing the Driver”

■ “Uninstalling the Driver”

■ “Using the Driver in an Application”

■ “Using the Driver in an Applet”

What Is JDBC?
Java database connectivity (JDBC) is the JavaSoft specification of a standard
application programming interface (API) that allows Java programs to access
database management systems. The JDBC API consists of a set of interfaces
and classes written in the Java programming language.

Using these standard interfaces and classes, programmers can write applica-
tions that connect to databases, send queries written in structured query
language (SQL), and process the results.
Getting Started 1-3

What Is JDBC?
The JDBC API is consistent with the style of the core Java interfaces and
classes, such as java.lang and java.awt. The following table describes the
interfaces, classes, and exceptions that make up the JDBC API.

Interface, Class, or Exception Description

java.sql.CallableStatement Interface used to execute stored procedures.

java.sql.Connection Interface used to establish a connection to a database.
SQL statements run within the context of a
connection.

java.sql.DatabaseMetaData Interface used to return information about the
database.

java.sql.Driver Interface used to locate the driver for a particular
database management system.

java.sql.PreparedStatement Interface used to send precompiled SQL statements
to the database server and obtain results.

java.sql.ResultSet Interface used to process the results returned from
executing an SQL statement.

java.sql.ResultSetMetaData Interface used to return information about the
columns in a ResultSet object.

java.sql.Statement Interface used to send static SQL statements to the
database server and obtain results.

java.sql.Date Subclass of java.util.Date used for the SQL DATE
data type.

java.sql.DriverManager Class used to manage a set of JDBC drivers.

java.sql.DriverPropertyInfo Class used to discover and supply properties to a
connection.

java.sql.Time Subclass of java.util.Date used for the SQL TIME
data type.

java.sql.TimeStamp Subclass of java.util.Date used for the SQL
TIMESTAMP data type.

java.sql.Types Class used to define constants that are used to
identify standard SQL data types, such as
VARCHAR, INTEGER, and DECIMAL.

(1 of 2)
1-4 IBM Informix JDBC Driver Programmer’s Guide

What Is a JDBC Driver?
Since JDBC is a standard specification, one Java program that uses the JDBC
API can connect to any database management system (DBMS), as long as a
driver exists for that particular DBMS.

For more information about the JDBC API, visit the JavaSoft Web site at:

http://www.javasoft.com/products/jdk/1.1/docs/guide/jdbc/index.html

What Is a JDBC Driver?
The JDBC API defines the Java interfaces and classes that programmers use to
connect to databases and send queries. A JDBC driver implements these inter-
faces and classes for a particular DBMS vendor.

A Java program that uses the JDBC API loads the specified driver for a
particular DBMS before it actually connects to a database. The JDBC Driver-
Manager class then sends all JDBC API calls to the loaded driver.

There are four types of JDBC drivers:

■ JDBC-ODBC bridge plus ODBC driver, also called Type 1.

Translates JDBC API calls into Microsoft ODBC calls that are then
passed to the ODBC driver. The ODBC binary code must be loaded on
every client computer that uses this type of driver.

ODBC is an acronym for Open Database Connectivity.

java.sql.String Class used to identify long text data types such as
LVARCHAR.

java.sql.DataTruncation Exception thrown or warning reported when data
has been truncated.

java.sql.SQLException Exception that provides information about a
database error.

java.sql.SQLWarning Warning that provides information about a database
warning.

Interface, Class, or Exception Description

(2 of 2)
Getting Started 1-5

Overview of Informix JDBC Driver
■ Native-API, partly Java driver, also called Type 2.

Converts JDBC API calls into DBMS-specific client API calls. Like the
bridge driver, this type of driver requires that some binary code be
loaded on each client computer.

■ JDBC-Net, pure-Java driver, also called Type 3.

Sends JDBC API calls to a middle-tier net server that translates the
calls into the DBMS-specific network protocol. The translated calls
are then sent to a particular DBMS.

■ Native-protocol, pure-Java driver, also called Type 4.

Converts JDBC API calls directly into the DBMS-specific network
protocol without a middle tier. This allows the client applications to
connect directly to the database server.

Overview of Informix JDBC Driver
Informix JDBC Driver is a native-protocol, pure-Java driver (Type 4). This
means that when you use Informix JDBC Driver in a Java program that uses
the JDBC API to connect to an Informix database, your session connects
directly to the database or database server, without a middle tier.

Informix JDBC Driver is based on Version 1.22 of the JDBC API.

Informix JDBC Driver is released as a Java class file called setup.class. For
instructions on how to install the driver, refer to “Installing the Driver” on
page 1-7.

The product (after installation) consists of the following files, some of which
are Java archive (JAR) files:

■ lib/ifxjdbc.jar

JAR file that contains the optimized implementations of the JDBC API
interfaces, classes, and methods.

The file is compiled with the -O option of the javac command.

■ lib/ifxjdbc-g.jar

Debug version of ifxjdbc.jar.

The file is compiled with the -g option of the javac command.
1-6 IBM Informix JDBC Driver Programmer’s Guide

Installing the Driver
■ demo/basic/*

demo/rmi/*

demo/stores7/*

demo/clob-blob/*

demo/udt-distinct/

Directories that contain the sample Java programs that use the JDBC
API. For descriptions of these sample files, see Appendix A, “Sample
Code Files.”

■ proxy/IfxJDBCProxy.class

HTTP tunneling proxy class file.

■ proxy/SessionMgr.class

Session manager class file supporting the HTTP tunneling proxy.

■ doc/release/*

Directory that contains the on-line release and documentation notes,
as well as the HTML and PDF versions of this programmer’s guide.

Installing the Driver
Informix JDBC Driver is released as a Java class file called setup.class.

There are two ways to install the driver: using a Setup program, or using the
command line. The following sections describe the two ways for both UNIX
and Windows.

Interactive Installation
This section describes how to interactively install Informix JDBC Driver with
the Setup program.

To interactively install Informix JDBC Driver on UNIX

1. If you are installing Informix JDBC Driver from a CD-ROM, load the
disc into the CD-ROM drive.

On Hewlett-Packard platforms, you must use the -o cdcase option of
the mount command to read the CD in case-sensitive mode.

UNIX
Getting Started 1-7

Interactive Installation
2. Copy the ifxjdbc_version.tar file from the Web or the CD into a
temporary directory (not the directory into which you are installing
Informix JDBC Driver). The version is the product version: for
example, 1.40.JC2.

Warning: If you copy the tar file to the same directory into which you attempt to
install the driver, the installation fails.

3. Execute the following command:
tar xvf ifxjdbc_version.tar

The setup.class and install.txt files appear in the temporary
directory.

4. Be sure your CLASSPATH environment variable points to Version
1.1.5 or later of the Java Development Kit (JDK).

5. At the UNIX shell prompt, create a directory to hold the contents of
the driver.

For example, to create the directory /work/jdbcdriver_home,
execute the following command:

mkdir /work/jdbcdriver_home

6. Change directory to the temporary directory that contains the
setup.class file.

7. Launch the Setup program with the java command at the UNIX shell
prompt:

java setup

8. The Setup program guides you through the installation of Informix
JDBC Driver.

The following warning message might appear:
Font specified in font.properties not found [-b&h-lucida sans

typewriter-bold-r-normal-sans-*-%d-*-*-m-*-iso8859-1]

This condition does not affect the installation.

After the Welcome window, the program asks you for your serial
number and key. It then asks you to accept a licensing agreement.
The program then asks you for the name of the directory that will
hold the contents of the driver. In this example, this directory is
called /work/jdbcdriver_home and was created in Step 5 of these
instructions.

The installation is complete when you get to the Installation
Complete window. ♦
1-8 IBM Informix JDBC Driver Programmer’s Guide

Interactive Installation
To interactively install Informix JDBC Driver on Windows

1. If you are installing Informix JDBC Driver from a CD-ROM, load the
disc into the CD-ROM drive.

2. Copy the ifxjdbc_version.tar file from the Web or the CD into a
temporary directory (not the directory into which you are installing
Informix JDBC Driver). The version is the product version: for
example, 1.40.JC2.

Warning: If you copy the tar file to the same directory into which you attempt to
install the driver, the installation fails.

3. Use WinZip or a similar utility to unpack the tar file. The setup.class
and install.txt files appear in the temporary directory.

4. Be sure your CLASSPATH environment variable points to Version
1.1.5 or later of the Java Development Kit (JDK).

5. Using Windows Explorer, create a directory to hold the contents of
the driver.

Assume, for this example, that the new directory is called
c:\work\jdbcdriver_home.

6. Change directory to the temporary directory that contains the
setup.class file.

7. Launch the Setup program with the java command at the Windows
command prompt:

java setup

8. The Setup program guides you through the installation of Informix
JDBC Driver.

The following warning message might appear:
Font specified in font.properties not found [-b&h-lucida sans

typewriter-bold-r-normal-sans-*-%d-*-*-m-*-iso8859-1]

This condition does not affect the installation.

After the Welcome window, the program asks you for your serial
number and key. It then asks you to accept a licensing agreement.
The program then asks you for the name of the directory that will
hold the contents of the driver. In this example, this directory is
called c:\work\dbcdriver_home and was created in Step 5 of these
instructions.

The installation is complete when you get to the Installation
Complete window. ♦

Windows
Getting Started 1-9

Silent Installation
Silent Installation
This section describes how to silently install Informix JDBC Driver from the
UNIX shell prompt or Windows command line.

To silently install Informix JDBC Driver on UNIX

1. If you are installing Informix JDBC Driver from a CD-ROM, load the
disc into the CD-ROM drive.

On Hewlett-Packard platforms, you must use the -o cdcase option of
the mount command to read the CD in case-sensitive mode.

2. Copy the ifxjdbc_version.tar file from the Web or the CD into a
temporary directory (not the directory into which you are installing
Informix JDBC Driver). The version is the product version: for
example, 1.40.JC2.

Warning: If you copy the tar file to the same directory into which you attempt to
install the driver, the installation fails.

3. Execute the following command:
tar xvf ifxjdbc_version.tar

The setup.class and install.txt files appear in the temporary
directory.

4. Be sure your CLASSPATH environment variable points to Version
1.1.5 or later of the Java Development Kit (JDK).

5. At the UNIX shell prompt, create a directory to hold the contents of
the driver.

For example, to create the directory /work/jdbcdriver_home,
execute the following command:

mkdir /work/jdbcdriver_home

6. Change directory to the temporary directory that contains the
setup.class file.

UNIX
1-10 IBM Informix JDBC Driver Programmer’s Guide

Silent Installation
7. Execute the following command at the UNIX shell prompt:
java setup -o <directory> serialNo=<serial_no> key=<key>

In this command, directory refers to the directory that will hold the
contents of the driver (created in Step 5 of these instructions), and
serial_no and key refer to the installation serial number and key.

The keywords serialNo and key are case sensitive. You can also use
the keywords SERIALNO, serialno, and KEY.

For example, to install Informix JDBC Driver in the directory
/work/jdbcdriver_home using a serial number of INF#J123456 and
a key of ABCDEF, execute the following command:
java setup -o /work/jdbcdriver_home serialNo=INF#J123456 key=ABCDEF

If the specified directory already contains Informix JDBC Driver files,
the command asks you if you want to overwrite them.

The installation is complete after the command has finished
executing.♦

To silently install Informix JDBC Driver on Windows

1. If you are installing Informix JDBC Driver from a CD-ROM, load the
disc into the CD-ROM drive.

2. Copy the ifxjdbc_version.tar file from the Web or the CD into a
temporary directory (not the directory into which you are installing
Informix JDBC Driver). The version is the product version: for
example, 1.40.JC2.

Warning: If you copy the tar file to the same directory into which you attempt to
install the driver, the installation fails.

3. Use WinZip or a similar utility to unpack the tar file. The setup.class
and install.txt files appear in the temporary directory.

4. Be sure your CLASSPATH environment variable points to Version
1.1.5 or later of the Java Development Kit (JDK).

5. Using Windows Explorer, create a directory to hold the contents of
the driver.

Assume, for this example, that the new directory is called
c:\work\jdbcdriver_home.

6. Change directory to the temporary directory that contains the
setup.class file.

Windows
Getting Started 1-11

Uninstalling the Driver
7. Execute the following command at the Windows command prompt:
java setup -o <directory> serialNo=<serial_no> key=<key>

In this command, directory refers to the directory that will hold the
contents of the driver (created in Step 5 of these instructions), and
serial_no and key refer to the installation serial number and key.

The keywords serialNo and key are case sensitive. You can also use
the keywords SERIALNO, serialno, and KEY.

For example, to install Informix JDBC Driver in the directory
c:\work\jdbcdriver_home using a serial number of INF#J123456
and a key of ABCDEF, execute the following command:
java setup -o c:\work\jdbcdriver_home serialNo=INF#J123456 key=ABCDEF

If the directory already contains Informix JDBC Driver files, the
command asks you if you want to overwrite them.

The installation is complete once the command has finished
executing.♦

Uninstalling the Driver
Uninstalling Informix JDBC Driver completely removes the driver and all of
its components from your computer. The following sections describe how to
uninstall Informix JDBC Driver on UNIX and Windows.

To uninstall Informix JDBC Driver on UNIX

1. Change to the directory in which you installed Informix JDBC Driver.

For example, if you installed the driver in the directory
/work/jdbcdriver_home, execute the following command at the
UNIX shell prompt:

cd /work/jdbcdriver_home

2. Launch the Uninstall program with the java command:
java uninstall

3. The Uninstall program guides you through the uninstallation of
Informix JDBC Driver. ♦

UNIX
1-12 IBM Informix JDBC Driver Programmer’s Guide

Using the Driver in an Application
To uninstall Informix JDBC Driver on Windows

1. Change to the directory in which you installed Informix JDBC Driver.

For example, if you installed the driver in the directory
c:\work\jdbcdriver_home, execute the following command at the
command prompt:

cd c:\work\jdbcdriver_home

2. Launch the Uninstall program with the java command:
java uninstall

3. The Uninstall program guides you through the uninstallation of
Informix JDBC Driver. ♦

Important: When you uninstall Informix JDBC Driver, you always get a message
that says the ifxjdbc.jar and ifxjdbc-g.jar files have changed, even if you have never
used the driver. This is because the files are automatically written to during the
installation of the driver.

Using the Driver in an Application
To use Informix JDBC Driver in an application, you must set your CLASSPATH
environment variable to point to the driver files. The CLASSPATH
environment variable tells the Java virtual machine (JVM) and other applica-
tions where to find the Java class libraries used in a Java program.

There are two ways of setting your CLASSPATH environment variable:

■ Add the full pathname of the ifxjdbc.jar file to the CLASSPATH
environment variable, as shown in the following example:
setenv CLASSPATH /work/jdbcdriver_home/lib/ifxjdbc.jar:$CLASSPATH

To use the version of the driver that supports debugging, specify the
file ifxjdbc-g.jar instead of ifxjdbc.jar.

■ Unpack the ifxjdbc.jar file and add its directory to the CLASSPATH
environment variable, as shown in the following example:

cd /work/jdbcdriver_home/lib
jar xvf ifxjdbc.jar
setenv CLASSPATH /work/jdbcdriver_home/lib:$CLASSPATH

To use the version of the driver that supports debugging, specify the
file ifxjdbc-g.jar instead of ifxjdbc.jar. ♦

Windows

UNIX
Getting Started 1-13

Using the Driver in an Applet
There are two ways of setting your CLASSPATH environment variable:

■ Add the full pathname of the ifxjdbc.jar file to the CLASSPATH
environment variable, as shown in the following example:
set CLASSPATH=c:\work\jdbcdriver_home\lib\ifxjdbc.jar;%CLASSPATH%

To use the version of the driver that supports debugging, specify the
file ifxjdbc-g.jar instead of ifxjdbc.jar.

■ Unpack the ifxjdbc.jar file and add its directory to the CLASSPATH
environment variable, as shown in the following example:
cd c:\work\jdbcdriver_home\lib
jar xvf ifxjdbc.jar
set CLASSPATH=c:\work\jdbcdriver_home\lib;%CLASSPATH%

To use the version of the driver that supports debugging, specify the
file ifxjdbc-g.jar instead of ifxjdbc.jar. ♦

For more information on the jar utility, refer to the JavaSoft documentation at
http://www.javasoft.com.

Using the Driver in an Applet
You can use Informix JDBC Driver in an applet to connect to an Informix
database from a browser such as Netscape Navigator or Microsoft Internet
Explorer. The following steps show how to specify Informix JDBC Driver in
the applet and how to ensure that the driver is correctly downloaded from
the Web server.

To use Informix JDBC Driver in an applet

1. Install the ifxjdbc.jar file in the same directory as your applet class
file.

To use the version of the driver that supports debugging, install the
file ifxjdbc-g.jar instead of ifxjdbc.jar.

Windows
1-14 IBM Informix JDBC Driver Programmer’s Guide

Using the Driver in an Applet
2. Specify the ifxjdbc.jar file in the ARCHIVE attribute of the APPLET
tag in your HTML file, as shown in the following example:

<APPLET ARCHIVE=ifxjdbc.jar CODE=my_applet.class
CODEBASE=http://www.myhost.com WIDTH=460 HEIGHT=160>
</APPLET>

To use the version of the driver that supports debugging, specify the
file ifxjdbc-g.jar instead of ifxjdbc.jar.

Important: A few browsers do not support the ARCHIVE attribute of the APPLET
tag. If you think this is true of the browsers that are going to download your applet,
you must unpack and install the ifxjdbc.jar file in the root directory of your Web
server.

If the browsers also do not support the JDBC API, you must install the class files
included in the java.sql package in the root directory of the Web server as well.

See your Web server documentation for information on installing files in the root
directory.
Getting Started 1-15

2
Chapter
Programming with Informix
JDBC Driver
In This Chapter . 2-3

Establishing a Connection 2-3
Loading Informix JDBC Driver 2-4
Creating a Connection 2-4

Format of Database URLs 2-5
Connecting from Trusted Clients 2-7
Database Versus Database Server Connections 2-8
Specifying Environment Variables with the Properties Class . . 2-9
Supported Informix Environment Variables 2-11

Accessing Database Metadata 2-14

Querying the Database 2-15
Manipulating Informix Large Object Data Types 2-15

Caching Large Objects 2-16
Examples 2-16

Manipulating Informix INTERVAL Data Types 2-21
Manipulating Other Data Types 2-23
Informix-Specific Information About Querying a Database. . . . 2-23
Example of Sending a Query to an Informix Database 2-25
Escape Syntax 2-26

Mapping Data Types 2-26
Mapping Between Informix and JDBC Data Types. 2-27
Supported ResultSet.getXXX() Methods 2-29

Handling Errors . 2-31
Using the SQLException Class 2-31
Retrieving Informix Error Message Text 2-32

2-2 IBM
Internationalization 2-33
JDK 1.1 and 1.2 Internationalization Support. 2-33
Support for Informix GLS Variables 2-33
Support for End-User Formats. 2-34

GL_DATE Variable 2-35
DBDATE Variable. 2-39
DBCENTURY Variable 2-41

Precedence Rules Regarding DATE Value End-User Formats . . . 2-41
Support for Code Set Conversion. 2-42

Unicode to Database Code Set 2-43
Unicode to Client Code Set 2-46
Connecting to a Database with Non-ASCII Characters 2-46
Code Set Conversion for TEXT Data Types 2-47

Handling Transactions 2-48

Other Informix Extensions to the JDBC API 2-49
Using the Informix SERIAL and SERIAL8 Data Types 2-49
Obtaining Driver Version Information 2-50

Using an HTTP Proxy Server 2-51

Restrictions and Limitations 2-53
 Informix JDBC Driver Programmer’s Guide

In This Chapter
This chapter explains the Informix-specific information you need to use
Informix JDBC Driver to connect to an Informix database. The chapter
includes the following sections:

■ “Establishing a Connection”

■ “Accessing Database Metadata”

■ “Querying the Database”

■ “Mapping Data Types”

■ “Handling Errors”

■ “Internationalization”

■ “Handling Transactions”

■ “Other Informix Extensions to the JDBC API”

■ “Using an HTTP Proxy Server”

Establishing a Connection
You must first establish a connection to an Informix database server or
database before you can start sending queries and receiving results in your
Java program.

You establish a connection by completing two actions:

1. Load Informix JDBC Driver.

2. Create a connection to either a database server or a specific database.
Programming with Informix JDBC Driver 2-3

Loading Informix JDBC Driver
Loading Informix JDBC Driver
To load Informix JDBC Driver, use the Class.forName() method, passing it the
value com.informix.jdbc.IfxDriver, as shown in the following code
example from the CreateDB.java program:

try
 {
 Class.forName(“com.informix.jdbc.IfxDriver”);
 }
catch (Exception e)
 {
 System.out.println(“ERROR: failed to load Informix JDBC driver.”);
 e.printStackTrace();
 return;
 }

The Class.forName() method loads the Informix implementation of the
Driver class, IfxDriver. The IfxDriver class then creates an instance of the
driver and registers it with the DriverManager class.

Once you have loaded Informix JDBC Driver, you are ready to connect to an
Informix database or database server.

If you are writing an applet to be viewed with Microsoft Internet Explorer,
you might need to explicitly register Informix JDBC Driver to avoid platform
incompatibilities.

To explicitly register the driver, use the DriverManager.registerDriver()
method, as shown in the following code example:

DriverManager.registerDriver((Driver)
Class.forName(“com.informix.jdbc.IfxDriver”).newInstance());

This method might register Informix JDBC Driver twice, which does not cause
a problem. ♦

Creating a Connection
To create a connection to an Informix database or database server, use the
DriverManager.getConnection() method. This method creates a Connection
object, which is later used to create SQL statements, send them to an Informix
database, and process the results.

Windows
2-4 IBM Informix JDBC Driver Programmer’s Guide

Creating a Connection
The DriverManager class keeps track of the available drivers and handles
connection requests between appropriate drivers and databases or database
servers. The url parameter of the getConnection() method is a database URL
that specifies the subprotocol (the database connectivity mechanism), the
database or database server identifier, and a list of properties. A second
parameter to the getConnection() method, property, is the property list. See
“Specifying Environment Variables with the Properties Class” on page 2-9
for an example of how to specify a property list.

The following example shows a database URL that connects to a database
called testDB:

jdbc:informix-sqli://123.45.67.89:1533/testDB:INFORMIXSERVER=myserver;
user=rdtest;password-test

The details of the database URL syntax are described in the next section.

The following code example from the CreateDB.java program shows how to
connect to database testDB using Informix JDBC Driver. In the full example,
the url variable, described in the preceding example, is passed in as a
parameter when the program is run at the command line.

try
 {
 conn = DriverManager.getConnection(url);
 }
catch (SQLException e)
 {
 System.out.println(“ERROR: failed to connect!”);
 System.out.println(“ERROR: “ + e.getMessage());
 e.printStackTrace();
 return;
 }

Important: Not all methods of the Connection interface are supported by Informix
JDBC Driver. For a list of unsupported methods, see “Restrictions and Limitations”
on page 2-51.

Format of Database URLs

Informix JDBC Driver supports database URLs of the following format:

jdbc:informix-sqli://[{ip-address|host-name}:port-number][/dbname]:
INFORMIXSERVER=server-name;[user=user;password=password]
[;name=value[;name=value]...]
Programming with Informix JDBC Driver 2-5

Creating a Connection
In the preceding syntax:

■ curly brackets ({}) together with vertical lines (|) denote more than
one choice of variable.

■ italics denote a variable value.

■ brackets ([]) denote an optional value.

■ words or symbols not enclosed in brackets are required
(INFORMIXSERVER=, for example).

Important: Blank spaces are not allowed in the database URL.

The following table describes the variable parts of the database URL.

Database URL Variable Required? Description

ip-address

host-name

Yes The IP address or the host name of the
computer running the Informix database
server.

An example of an IP address is 123.45.67.89.

An example of a host name is myhost.com or
myhost.informix.com.

port-number Yes The port number of the Informix database
server.

dbname No The name of the Informix database to which
you want to connect. If you do not specify the
name of a database, a connection is made to the
Informix database server.

(1 of 2)
2-6 IBM Informix JDBC Driver Programmer’s Guide

Creating a Connection
Connecting from Trusted Clients

For a trusted client, the user and password properties are optional. If these are
not specified, the database connection uses the current user and no
password. You must specify both user and password or neither; specifying one
without the other generates an error. A connection that does not use a
password is unsuccessful unless the client is trusted by the server.

server-name Yes The name of the Informix server to which you
want to connect. This is the value of the
INFORMIXSERVER environment variable.

The INFORMIXSERVER environment
variable is required in the database URL,
unless it is included in the property list.

user

password

Yes,
unless
client is
trusted

The name of the user that wants to connect to
the Informix database or database server, and
the password of that user. You must specify
both the user and the password if the client is
not trusted. If the client is trusted, you can
specify both or neither.

name=value No A name-value pair that specifies a value for the
Informix environment variable contained in
the name variable, recognized by either
Informix JDBC Driver or Informix database
servers. The name variable is case insensitive.

Informix JDBC Driver reads Informix
environment variables from either the
database URL or from a connection property
list, described in “Specifying Environment
Variables with the Properties Class” on
page 2-9. The user’s environment is not
consulted.

Refer to “Supported Informix Environment
Variables” on page 2-11 for a list of Informix
environment variables supported by Informix
JDBC Driver.

Database URL Variable Required? Description

(2 of 2)
Programming with Informix JDBC Driver 2-7

Creating a Connection
Database Versus Database Server Connections

Using the DriveManager.getConnection() method, you can create a
connection to either an Informix database or an Informix database server.

To create a connection to an Informix database, specify the name of the
database in the dbname variable of the database URL. If you omit the name of
a database, a connection is made to the database server specified by the
INFORMIXSERVER environment variable of the database URL or the
connection property list.

If you connect directly to an Informix database server, you can execute an
SQL statement that connects to a database later in your Java program.

All connections to both databases and database servers must include the
name of an Informix database server via the INFORMIXSERVER environment
variable.

Important: If you are connecting to a 5.x database server (either INFORMIX-OnLine
Dynamic Server or INFORMIX-SE), you must specify the USEV5SERVER
environment variable in the database URL or property list. Its value should be 1, such
as “USEV5SERVER=1”.

The example given in “Creating a Connection” on page 2-4 shows how to
create a connection directly to the Informix database called testDB with the
database URL.

The following example from the DBConnection.java program shows how to
first create a connection to the Informix database server called myserver and
then connect to the database testDB later in the Java program using the
Statement.executeUpdate() method.

The following database URL is passed in as a parameter to the program when
the program is run at the command line; note that the URL does not include
the name of a database:

jdbc:informix-sqli://123.45.67.89:1533:INFORMIXSERVER=myserver;user=rdtest;
password=test
2-8 IBM Informix JDBC Driver Programmer’s Guide

Creating a Connection
Here is the example code:

String cmd = null;
int rc;

Connection conn = null;

try
 {
 Class.forName(“com.informix.jdbc.IfxDriver”);
 }
catch (Exception e)
 {
 System.out.println(“ERROR: failed to load Informix JDBC driver.”);
 }

try
 {
 conn = DriverManager.getConnection(url);
 }
catch (SQLException e)
 {
 System.out.println(“ERROR: failed to connect!”);
 }

try
 {
 Statement stmt = conn.createStatement();
 cmd = “database testDB”;
 rc = stmt.executeUpdate(cmd);
 stmt.close();
 }
catch (SQLException e)
 {
 System.out.println(“ERROR: execution failed - statement: “ + cmd);
 System.out.println(“ERROR: “ + e.getMessage());
 }

Specifying Environment Variables with the Properties Class

Informix JDBC Driver reads Informix environment variables only from the
name-value pairs in the connection database URL or from a connection
property list. The driver does not consult the user’s environment for any
environment variables. Refer to “Supported Informix Environment
Variables” on page 2-11 for a list of supported Informix environment
variables.

To specify Informix environment variables in the name-value pairs of the
connection database URL, refer to “Format of Database URLs” on page 2-5.
Programming with Informix JDBC Driver 2-9

Creating a Connection
To specify Informix environment variables via a property list, use the
java.util.Properties class to build the list of properties. The list of properties
might include Informix environment variables, such as INFORMIXSERVER,
as well as user and password. After you have built the property list, pass it to
the DriverManager.getConnection() method as a second parameter. You still
need to include a database URL as the first parameter, although in this case
you do not need to include the list of properties in the URL.

The following code from the optofc.java example shows how to use the
java.util.Properties class to set connection properties. It first uses the
Properties.put() method to set the environment variable OPTOFC to 1 in the
connection property list; then it connects to the database.

The DriverManager.getConnection() method in this example takes two
parameters: the database URL and the property list. The example creates a
connection similar to the example given in “Creating a Connection” on
page 2-4.

try
 {
 Class.forName(“com.informix.jdbc.IfxDriver”);
 }
catch (Exception e)
 {
 System.out.println(“ERROR: failed to load Informix JDBC driver.”);
 }

try
 {
 Properties pr = new Properties();
 pr.put(“OPTOFC”,”1”);
 conn = DriverManager.getConnection(newUrl, pr);
 }
catch (SQLException e)
 {
 System.out.println(“ERROR: failed to connect!”);
 }
2-10 IBM Informix JDBC Driver Programmer’s Guide

Creating a Connection
Supported Informix Environment Variables

The following table lists the Informix environment variables supported by
Informix JDBC Driver.

Supported Informix
Environment Variables Description

CLIENT_LOCALE Specifies the locale of the client that is accessing the
database. Together with the DB_LOCALE variable, the
server uses this variable to establish the server
processing locale. This variable is available on and
optional for servers that support GLS.

DBANSIWARN Checks for Informix extensions to ANSI standard
syntax.

DBCENTURY Enables you to specify the appropriate expansion for
one- or two-digit year DATE and DATETIME values.
See the Informix Guide to SQL: Reference for detailed
information on this environment variable.

DBDATE Specifies the end-user formats of values in DATE
columns.

DB_LOCALE Specifies the locale of the database. Together with the
CLIENT_LOCALE variable, the server uses this
variable to establish the server processing locale. This
variable is available on and optional for servers that
support GLS.

DBSPACETEMP Specifies the dbspaces in which temporary tables are
built.

DBUPSPACE Specifies the amount of system disk space that the
UPDATE STATISTICS statement can use when it simul-
taneously constructs multiple-column distributions.

DELIMIDENT When set to Y, specifies that strings set off by double
quotes are delimited identifiers.

FET_BUF_SIZE Overrides the default setting for the size of the fetch
buffer for all data except large objects. The default size
is 4096 bytes.

(1 of 4)
Programming with Informix JDBC Driver 2-11

Creating a Connection
GL_DATE Specifies the end-user formats of values in DATE
columns. This variable is supported in Informix
database servers 7.2x and beyond.

IFX_AUTOFREE When set to 1, specifies that the Statement.close()
method does not require a network round-trip to free
the server cursor resources if the cursor has already
been closed in the database server.

The database server automatically frees the cursor
resources after the cursor is closed, either explicitly by
the ResultSet.close() method or implicitly by the
OPTOFC environment variable.

Once the cursor resources have been freed, the cursor
can no longer be referenced.

INFORMIXCONRETRY Specifies the maximum number of additional
connection attempts that can be made to each database
server by the client during the time limit specified by the
default value of the INFORMIXCONTIME
environment variable (15 seconds).

INFORMIXCONTIME Sets the timeout period for an attempt to connect to the
server. If a connection attempt does not succeed in this
time, the attempt is aborted and a connection error is
reported. The default value is 15 seconds.

INFORMIXOPCACHE Specifies the size of the memory cache for the staging-
area blobspace of the client application.

INFORMIXSERVER Specifies the default database server to which an explicit
or implicit connection is made by a client application.

INFORMIXSTACKSIZE Specifies the stack size, in kilobytes, that the database
server uses for a particular client session.

Supported Informix
Environment Variables Description

(2 of 4)
2-12 IBM Informix JDBC Driver Programmer’s Guide

Creating a Connection
LOBCACHE Determines the buffer size for large object data that is
fetched from the database server:

■ If LOBCACHE > 0, the maximum LOBCACHE
number of bytes is allocated in memory to hold the
data. If the data size exceeds the LOBCACHE value,
the data is stored in a temporary file. If a security
violation occurs during creation of this file, the data is
stored in memory.

■ If LOBCACHE = 0, the data is always stored in a file.
In this case, if a security violation occurs, Informix
JDBC Driver makes no attempt to store the data in
memory.

■ If LOBCACHE < 0, the data is always stored in
memory. If the required amount of memory is not
available, an error occurs.

If the LOBCACHE value is not specified, the default is
4096 bytes.

NODEFDAC When set to YES, prevents default table and routine
privileges from being granted to the PUBLIC user when
a new table or routine is created in a database that is not
ANSI compliant. Default is NO.

OPTCOMPIND Specifies the join method that the query optimizer uses.

OPTOFC When set to 1, the ResultSet.close() method does not
require a network round-trip if all the qualifying rows
have already been retrieved in the client’s tuple buffer.
The database server automatically closes the cursor
after all the rows have been retrieved.

Informix JDBC Driver might not have additional rows
in the client’s tuple buffer before the next
ResultSet.next() method is called. Therefore, unless
Informix JDBC Driver has received all the rows from the
database server, the ResultSet.close() method might
still require a network round-trip when OPTOFC is set
to 1.

PATH Specifies the directories that should be searched for
executable programs.

Supported Informix
Environment Variables Description

(3 of 4)
Programming with Informix JDBC Driver 2-13

Accessing Database Metadata
For a detailed description of a particular environment variable, refer to
Informix Guide to SQL: Reference. You can find the on-line version of this guide
at http://www.informix.com/answers.

Accessing Database Metadata
To access information about an Informix database, use the JDBC API
DatabaseMetaData interface.

Informix JDBC Driver is completely compatible with the JDBC API specifi-
cation for accessing database metadata. The driver supports all the methods
of the DatabaseMetaData interface.

Informix JDBC Driver uses the sysmaster database to get database metadata.
If you want to use the DatabaseMetaData interface in your Java program, the
sysmaster database must exist in the Informix database server to which your
Java program is connected.

PDQPRIORITY Determines the degree of parallelism used by the
database server.

PLCONFIG Specifies the name of the configuration file used by the
high-performance loader.

PSORT_DBTEMP Specifies one or more directories to which the database
server writes the temporary files it uses when
performing a sort.

PSORT_NPROCS Enables the database server to improve the performance
of the parallel-process sorting package by allocating
more threads for sorting.

USEV5SERVER When set to 1, specifies that the Java program is
connecting to an INFORMIX-OnLine or INFORMIX-SE
5.x database server.

This environment variable is mandatory if you are
connecting to an INFORMIX-OnLine or INFORMIX-SE
5.x database server.

Supported Informix
Environment Variables Description

(4 of 4)
2-14 IBM Informix JDBC Driver Programmer’s Guide

Querying the Database
Informix JDBC Driver interprets the JDBC API term schemas to mean the names
of Informix users who own tables. The DatabaseMetaData.getSchemas()
method returns all the users found in the owner column of the systables
system catalog.

Similarly, Informix JDBC Driver interprets the JDBC API term catalogs to mean
the names of Informix databases. The method DatabaseMetaData.getCat-
alogs() returns the names of all the databases that currently exist in the
Informix database server to which your Java program is connected.

The example DBMetaData.java shows how to use the DatabaseMetaData
and ResultSetMetaData interfaces to gather information about a new
procedure. Refer to Appendix A, “Sample Code Files,” for the full text of this
example.

Querying the Database
Informix JDBC Driver complies with the JDBC API specification for sending
queries to a database and retrieving the results. The driver supports almost
all the methods of the Statement, PreparedStatement, CallableStatement,
ResultSet, and ResultSetMetaData interfaces.

Refer to “Restrictions and Limitations” on page 2-51 for a list of methods that
are not supported by Informix JDBC Driver and should not be used in your
Java program. This reference also includes a list of methods that behave
differently than described in the JDBC API specification.

Manipulating Informix Large Object Data Types
This section describes the Informix BYTE, TEXT, BLOB, and CLOB data types
and how to manipulate columns of these data types with the JDBC API.

The BYTE data type is a data type for a simple large object that stores any kind
of data in an undifferentiated byte stream. Examples of binary data include
spreadsheets, digitized voice patterns, and video clips. The TEXT data type is
a data type for a simple large object that stores any kind of text data. It can
contain both single and multibyte characters.
Programming with Informix JDBC Driver 2-15

Manipulating Informix Large Object Data Types
Columns of either data type have a theoretical limit of 231 bytes and a
practical limit determined by your disk capacity.

Support for Informix smart large objects and BLOB or CLOB data types is only
available with 9.x versions of the server. Columns of either data type have a
theoretical limit of 4 terabytes and a practical limit determined by your disk
capacity.

For more detailed information about the Informix BYTE, TEXT, BLOB, and
CLOB data types, refer to Informix Guide to SQL: Reference and Informix Guide
to SQL: Syntax. You can find the on-line version of both of these guides at
http://www.informix.com/answers.

Caching Large Objects

Whenever a BLOB, CLOB, TEXT, or BYTE object is fetched from the server, the
data is cached into memory. If the size of the large object is bigger than the
value in the LOBCACHE environment variable, the large object data is stored
in a temporary file. For more information about the LOBCACHE variable, see
“Memory Management of Large Objects” on page 3-6.

Examples

The examples in this section illustrate the following features:

■ Inserting into or updating BYTE and TEXT columns

■ Selecting from BYTE and TEXT columns

These examples apply to BLOB and CLOB columns, respectively, as well. For
additional examples, see Appendix A, “Sample Code Files.”

Inserting into or Updating BYTE and TEXT Columns

To insert into or update BYTE and TEXT columns, read a stream of data from
a source, such as an operating system file, and transmit it to the database as
a java.io.InputStream object. The PreparedStatement interface provides
methods for setting an input parameter to this Java input stream. When the
statement is executed, Informix JDBC Driver makes repeated calls to the input
stream, reading its contents and transmitting those contents as the actual
parameter data to the database.
2-16 IBM Informix JDBC Driver Programmer’s Guide

Manipulating Informix Large Object Data Types
For BYTE data types, use the PreparedStatement.setBinaryStream() method
to set the input parameter to the InputStream object. For TEXT data types, use
the PreparedStatement.setAsciiStream() method.
Programming with Informix JDBC Driver 2-17

Manipulating Informix Large Object Data Types
The following example from the ByteType.java program shows how to insert
the contents of the operating system file data.dat into a column of data type
BYTE:

try
{
stmt = conn.createStatement();
stmt.executeUpdate(“create table tab1(col1 byte)”);
}

catch (SQLException e)
{
System.out.println(“Failed to create table ...” + e.getMessage());
}

System.out.println(“Trying to insert data using Prepare Statement ...”);
try

{
pstmt = conn.prepareStatement(“insert into tab1 values (?)”);
}

catch (SQLException e)
{
System.out.println(“Failed to Insert into tab:” + e.toString());
}

File file = new File(“data.dat”);
int fileLength = (int) file.length();
InputStream value = null;
FileInputStream fileinp = null;
int row = 0;
String str = null;
int rc = 0;
ResultSet rs = null;

System.out.println(“Inserting data ...\n”);
try

{
fileinp = new FileInputStream(file);
value = (InputStream)fileinp;
}

catch (Exception e) {}

try
{
pstmt.setBinaryStream(1,value,10); //set 1st column
}

catch (SQLException e)
{
System.out.println(“Unable to set parameter”);
}

set_execute();
...
public static void set_execute()
{

try
{

2-18 IBM Informix JDBC Driver Programmer’s Guide

Manipulating Informix Large Object Data Types
pstmt.executeUpdate();
}

catch (SQLException e)
{
System.out.println(“Failed to Insert into tab:” + e.toString());
e.printStackTrace();
}

}

The example first creates a java.io.File object that represents the operating
system file data.dat. The example then creates a FileInputStream object to
read from the File object. The FileInputStream object is cast to its superclass
InputStream, which is the expected data type of the second parameter to the
PreparedStatement.setBinaryStream() method. The setBinaryStream()
method is executed on the already prepared INSERT statement, which sets the
input stream parameter. Finally, the PreparedStatement.executeUpdate()
method is executed, which actually inserts the contents of the data.dat
operating system file into the BYTE column of the table.

The TextType.java program shows how to insert data into a TEXT column. It
is very similar to inserting into a BYTE column, except the method
setAsciiStream() is used to set the input parameter instead of
setBinaryStream().

Selecting from BYTE and TEXT Columns

After you select from a table into a ResultSet object, you can use the
ResultSet.getBinaryStream() and ResultSet.getAsciiStream() methods to
retrieve a stream of binary or ASCII data from BYTE and TEXT columns,
respectively. Both methods return an InputStream object, which can be used
to read the data in chunks.

All the data in the returned stream in the current row must be read before you
call the next() method to retrieve the next row.
Programming with Informix JDBC Driver 2-19

Manipulating Informix Large Object Data Types
The following example from the ByteType.java program shows to how select
data from a BYTE column and print out the data to the standard output:

try
{
stmt = conn.createStatement();
rs = stmt.executeQuery(“Select * from tab1”);
while(rs.next())

{
row++;
value = rs.getBinaryStream(1);
System.out.println(“\nResult of row #” + row + “, size = “
+ value.available() + “ from getAsciiStream(1) ..\n”);
dispValue(value);
}

}
catch (Exception e) { }
...
public static void dispValue(InputStream in)

{
int size;
byte buf;
int count = 0;
try

{
size = in.available();
byte ary[] = new byte[size];
buf = (byte) in.read();
while(buf!=-1)

{
ary[count] = buf;
count++;
buf = (byte) in.read();
}

System.out.println(new String(ary).trim());
}

catch (Exception e)
{
System.out.println(“Error occur during reading stream ... \n”);
}

}
}

The example first puts the result of a SELECT statement into a ResultSet
object. It then executes the method ResultSet.getBinaryStream() to retrieve
the BYTE data into a Java InputStream object.

The method dispValue(), whose Java code is also included in the example, is
used to actually print out the contents of the column to standard output. The
dispValue() method uses byte arrays and the InputStream.read() method to
systematically read the contents of the BYTE column.
2-20 IBM Informix JDBC Driver Programmer’s Guide

Manipulating Informix INTERVAL Data Types
The TextType.java program shows how to select data from a TEXT column. It
is very similar to selecting from a BYTE column, except the getAsciiStream()
method is used instead of getBinaryStream().

Manipulating Informix INTERVAL Data Types
The Informix INTERVAL data type stores a value that represents a span of
time. INTERVAL data types are divided into two types: year-month intervals
and day-time intervals. A year-month interval can represent a span of years
and months, and a day-time interval can represent a span of days, hours,
minutes, seconds, and fractions of a second.

You can retrieve and insert Informix INTERVAL data types using the
following methods:

■ ResultSet.getString()

■ PreparedStatement.setString()

The following example from the Interval.java program shows how to insert
into and select from the two types of INTERVAL data types:

/*
 * Create a table with two interval columns
 */
System.out.println(““);
System.out.println(“Create a table”);
try
 {
 cmd = “create table intrvl_tab “ +

 “(ym interval year to month, ds interval day to second)”;

 int rowcount = stmt.executeUpdate(cmd);
 System.out.println(“Create table rowcount = “ + rowcount);
 }
catch (SQLException e)
 {
 System.out.println(“ERROR: execution failed - statement: “ + cmd);
 System.out.println(“ERROR: “ + e.getMessage());
 return;
 }

/*
 * Insert an interval using a String host variable.
 */
System.out.println(““);
System.out.println(“Insert an interval using a String host variable”);
try
 {
Programming with Informix JDBC Driver 2-21

Manipulating Informix INTERVAL Data Types
 String ym = new String(“102-11”); // 102 years and 11 months
 String ds = new String(“5 10:03:55”); // 5 days 10 hours 3 minutes

 // and 55 seconds
 cmd = “insert into intrvl_tab values (?, ?)”;
 PreparedStatement pstmt = conn.prepareStatement(cmd);

 pstmt.setString(1, ym);
 pstmt.setString(2, ds);

 int rowcount = pstmt.executeUpdate();
 System.out.println(“Insert rowcount = “ + rowcount);
 }
catch (SQLException e)
 {
 System.out.println(“ERROR: execution failed - statement: “ + cmd);
 System.out.println(“ERROR: “ + e.getMessage());
 return;
 }

/*
 * Now fetch the row back
 */
System.out.println(““);
System.out.println(“Select from intrvl_tab”);
try
 {
 cmd = “select * from intrvl_tab”;
 ResultSet rs = stmt.executeQuery(cmd);

 String ym;
 String ds;
 while(rs.next())
 {
 ym = rs.getString(1);
 System.out.println(“ Select: ym = “ + ym);

 ds = rs.getString(2);
 System.out.println(“ Select: ds = “ + ds);
 }

 }
catch (SQLException e)
 {
 System.out.println(“ERROR: execution failed - statement: “ + cmd);
 System.out.println(“ERROR: “ + e.getMessage());
 return;
 }
2-22 IBM Informix JDBC Driver Programmer’s Guide

Manipulating Other Data Types
Manipulating Other Data Types
You can retrieve and insert Informix BOOLEAN data types using the
following methods:

■ ResultSet.getBoolean()

■ PreparedStatement.setBoolean()

You can retrieve and insert Informix LVARCHAR data types using the
following methods:

■ ResultSet.getString()

■ PreparedStatement.setString()

You can retrieve and insert opaque data types as long as a user-defined
function casts the opaque type to a built-in type.

You can retrieve and insert distinct data types as their base types. For
example, here is the SQL statement that defines the distinct type:

CREATE DISTINCT TYPE money_type AS NUMERIC(10, 2);
CREATE TABLE disttab (money_col money_type);

Here is an example of binding to the base type:

PreparedStatement pstmt = conn.prepareStatement(“INSERT INTO disttab “ +
“(money_col) VALUES (?)”);

BigDecimal bigdec = new BigDecimal((double)123.45);
pstmt.setBigDecimal(1, bigdec);
pstmt.executeUpdate();

When you bind as the underlying type, Informix JDBC Driver binds as the
underlying type on the client side, because the server provides implicit
casting between the underlying type and the distinct type.

Informix-Specific Information About Querying a Database
This section describes the Informix-specific information you need to know to
use Informix JDBC Driver to query an Informix database and process the
results.
Programming with Informix JDBC Driver 2-23

Informix-Specific Information About Querying a Database
The Informix JDBC Driver implementation of the Statement.execute()
method returns a single ResultSet object. This implementation differs from
the JDBC API specification, which states that the method can return multiple
ResultSet objects.

Be sure to always explicitly close a Statement, PreparedStatement, and
CallableStatement object by calling the appropriate close() method in your
Java program when you have finished processing the results of an SQL
statement. This closure immediately deallocates the resources that have been
allocated to execute your SQL statement. Although the ResultSet.close()
method closes the ResultSet object, it does not deallocate the resources
allocated to the Statement, PreparedStatement, or CallableStatement
objects.

Important: For best results, always call ResultSet.close() and Statement.close()
methods to indicate to Informix JDBC Driver that you are done with the statement or
result set. Otherwise, your program might not release all its resources on the database
server.

Important: The same Statement or ResultSet instance cannot be accessed concur-
rently across threads. You can, however, share a Connection object between multiple
threads.

For example, if one thread executes the Statement.executeQuery() method on a
Statement object, and another thread executes the Statement.executeUpdate()
method on the same Statement object, the results of both methods are unexpected
and depend on which method was executed last.

Similarly, if one thread executes the method ResultSet.next() and another thread
executes the same method on the same ResultSet object, the results of both methods
are unexpected and depend on which method was executed last.
2-24 IBM Informix JDBC Driver Programmer’s Guide

Example of Sending a Query to an Informix Database
Example of Sending a Query to an Informix Database
The following example from the SimpleSelect.java program shows how to
use the PreparedStatement interface to execute a SELECT statement that has
one input parameter:

try
 {

PreparedStatement pstmt = conn.prepareStatement(“Select * from x where a = ?;”);
 pstmt.setInt(1, 11);
 ResultSet r = pstmt.executeQuery();

 while(r.next())
 {
 short i = r.getShort(1);
 System.out.println(“Select: column a = “ + i);
 }
 r.close();
 pstmt.close();
 }
catch (SQLException e)
 {
 System.out.println(“ERROR: Fetch statement failed: “ + e.getMessage());
 }

The program first uses the Connection.prepareStatement() method to
prepare the SELECT statement with its single input parameter. It then assigns
a value to the parameter using the PreparedStatement.setObject() method
and executes the query with the PreparedStatement.executeQuery()
method.

The program returns resulting rows in a ResultSet object, through which the
program iterates with the ResultSet.next() method. The program retrieves
individual column values with the ResultSet.getShort() method, since the
data type of the selected column is SMALLINT.

Finally, both the ResultSet and PreparedStatement objects are explicitly
closed with the appropriate close() method.

For more information on which getXXX() methods retrieve individual
column values, refer to “Mapping Data Types” on page 2-25.
Programming with Informix JDBC Driver 2-25

Escape Syntax
Escape Syntax
Valid escape syntax for SQL statements is as follows:

You can put any of the above in an SQL statement. For example:

executeUpdate("insert into tab1 values({d '1999-01-01'})");

Everything inside the brackets is converted into a valid Informix SQL
statement and returned to the calling function.

Mapping Data Types
This section discusses mapping issues between data types defined in a Java
program and the data types supported by the Informix database server. In
particular, it covers the following two topics:

■ Mapping between JDBC API data types and Informix data types

■ ResultSet.getXXX() methods supported by Informix JDBC Driver

Type of Statement Escape Syntax

Stored procedure {call procedure}

Stored procedure {var = call procedure}

Date {d 'yyyy-mm-dd'}

Time {t 'hh:mm:ss'}

Timestamp
(Datetime)

{ts 'yyyy-mm-dd hh:mm:ss[.fffff]'}

Function call {fn func[(args)]}

Escape character {escape 'escape-char'}

Outer join {oj outer-join-statement}
2-26 IBM Informix JDBC Driver Programmer’s Guide

Mapping Between Informix and JDBC Data Types
Mapping Between Informix and JDBC Data Types
Since there are variations between the SQL data types supported by each
database vendor, the JDBC API defines a set of generic SQL data types in the
class java.sql.Types. Use these JDBC API data types to reference generic SQL
types in your Java programs that use the JDBC API to connect to Informix
databases.

The following table shows the Informix data type to which each JDBC API
data type maps.

JDBC API Data Type Informix Data Type

BIGINT INT8

BINARY BYTE

BIT Not supported

CHAR CHAR(n)

DATE DATE

DECIMAL DECIMAL

DOUBLE FLOAT

FLOAT SMALLFLOAT

INTEGER INTEGER

LONGVARBINARY BYTE

LONGVARCHAR TEXT

NUMERIC DECIMAL

REAL SMALLFLOAT

SMALLINT SMALLINT

TIME DATETIME

TIMESTAMP DATETIME

(1 of 2)
Programming with Informix JDBC Driver 2-27

Mapping Between Informix and JDBC Data Types
The LONGVARBINARY and LONGVARCHAR JDBC types can also map to
Informix BLOB and CLOB types, respectively.

Important: Informix JDBC Driver maps java.sql.Timestamp to the Informix type
DATETIME YEAR TO FRACTION(5) and java.sql.Time to the Informix type
DATETIME HOUR TO SECOND. Informix DATETIME types are very restrictive and
are not interchangeable. If you attempt to bind java.sql.Time to DATETIME YEAR
TO FRACTION(5) or java.sql.Timestamp to DATETIME HOUR TO SECOND, you
might get an error from the Informix database server. Any other DATETIME quali-
fiers are not supported.

The following table lists mappings between the extended data types
supported in Informix Dynamic Server with Universal Data Option and the
corresponding Java and JDBC types.

TINYINT SMALLINT

VARBINARY BYTE

VARCHAR VARCHAR(m,r)

JDBC API Data Type Informix Data Type

(2 of 2)

JDBC Type Java Object Type Informix Type

java.sql.Types.OTHER

java.sql.Types.SMALLINT

boolean

smallint

BOOLEAN

IfxTypes.IFX_TYPE_BOOL

java.sql.Types.LONGVARCHAR java.sql.String

java.io.inputStream

LVARCHAR

IfxTypes.IFX_TYPE_LVARCHAR

java.sql.Types.LONGVARBINARY java.io.inputStream

byte[]

BYTE, BLOB

IfxTypes.IFX_TYPE_BYTE

java.sql.Types.LONGVARCHAR java.io.InputStream

java.sql.String

TEXT, CLOB

IfxTypes.IFX_TYPE_TEXT
2-28 IBM Informix JDBC Driver Programmer’s Guide

Supported ResultSet.getXXX() Methods
A Java boolean object can map to a smallint object or an Informix BOOLEAN
data type. Informix JDBC Driver attempts to map it according to the column
type. However, in cases such as PreparedStatement host variable bindings,
Informix JDBC Driver cannot access the column types, so the mapping is
somewhat limited.

Supported ResultSet.getXXX() Methods
Use the ResultSet.getXXX() methods to transfer data from an Informix
database to a Java program that uses the JDBC API to connect to an Informix
database. For example, use the ResultSet.getString() method to get the data
stored in a column of data type LVARCHAR.

Important: If you use an expression within an SQL statement—for example, SELECT
mytype::LVARCHAR FROM mytab—you might not be able to use
ResultSet.getXXX(columnName) to retrieve the value. Use
ResultSet.getXXX(columnIndex) to retrieve the value instead.

The following table lists the ResultSet.getXXX() methods that Informix JDBC
Driver supports. The top heading lists the standard JDBC API data types
defined in the java.sql.Types class. These translate to specific Informix data
types, as shown in the table on page 2-26. The table lists the getXXX() methods
you can use to retrieve data of a particular JDBC API data type.

An uppercase and bold X indicates the getXXX() method Informix recom-
mends you use; a lowercase x indicates other getXXX() methods supported by
Informix JDBC Driver.

getXXX() Method

JDBC API Data Types from java.sql.Types

TI
NY

IN
T

SM
AL

LI
NT

IN
TE

GE
R

BI
GI

NT

RE
AL

FL
OA

T

DO
UB

LE

DE
CI

M
AL

NU
M

ER
IC

BI
T

CH
AR

VA
RC

HA
R

LO
NG

VA
RC

HA
R

BI
NA

RY

VA
RB

IN
AR

Y

LO
NG

VA
RB

IN
AR

Y

DA
TE

TI
M

E

TI
M

ES
TA

M
P

BL
OB

CL
OB

getByte() X x x x x x x x x x1 x1

getShort() x X x x x x x x x x1 x1

getInt() x x X x x x x x x x1 x1

(1 of 2)
Programming with Informix JDBC Driver 2-29

Supported ResultSet.getXXX() Methods
The getXXX() methods return a null value if the retrieved column value is an
SQL null value.

getLong() x x x X x x x x x x1 x1

getFloat() x x x x X x x x x x1 x1

getDouble() x x x x x X X x x x1 x1

getBigDecimal() x x x x x x x X X x x

getBoolean() x x x x x x x x x x x

getString() x x x x x x x x x X X x x x x x x x x

getBytes() x X X x x

getDate() x x X x

getTime() x x X x

getTimestamp() x x x X

getAsciiStream() X x x x X

getUnicodeStream()

getBinaryStream() x x x X X

getObject() x x x x x x x x x x x x2 x x x2 x x3 x x x

Notes:
1 The column value must match the type of getXXX() exactly, or an SQLException is raised. If the column
value is not within the allowed value range, the getXXX() method raises an exception instead of converting
the data type. For example, getByte(1) raises an SQLException if the column value is 1000.
2 A byte array is returned.
3 A Timestamp object is returned instead of a Time object.

getXXX() Method

JDBC API Data Types from java.sql.Types

TI
NY

IN
T

SM
AL

LI
NT

IN
TE

GE
R

BI
GI

NT

RE
AL

FL
OA

T

DO
UB

LE

DE
CI

M
AL

NU
M

ER
IC

BI
T

CH
AR

VA
RC

HA
R

LO
NG

VA
RC

HA
R

BI
NA

RY

VA
RB

IN
AR

Y

LO
NG

VA
RB

IN
AR

Y

DA
TE

TI
M

E

TI
M

ES
TA

M
P

BL
OB

CL
OB

(2 of 2)
2-30 IBM Informix JDBC Driver Programmer’s Guide

Handling Errors
Handling Errors
Use the JDBC API SQLException class to handle errors in your Java program.
The Informix-specific com.informix.jdbc.Message class can also be used
outside a Java program to retrieve the Informix error text for a given error
number.

Using the SQLException Class
Whenever an error occurs from either Informix JDBC Driver or the database
server, an SQLException is raised. Use the following methods of the SQLEx-
ception class to retrieve the text of the error message, the error code, and the
SQLSTATE value:

■ getMessage()

Returns a description of the error. SQLException inherits this method
from the java.util.Throwable class.

■ getErrorCode()

Returns an integer value that corresponds to the Informix database
server or Informix JDBC Driver error code.

■ getSQLState()

Returns a string that describes the SQLSTATE value. The string
follows the X/Open SQLSTATE conventions.

All Informix JDBC Driver errors have error codes of the form -79XXX, such as
-79708 Method can’t take null parameter.

For a list of Informix database server errors, refer to Informix Error Messages.
You can find the on-line version of this guide at
http://www.informix.com/answers.
Programming with Informix JDBC Driver 2-31

Retrieving Informix Error Message Text
The following example from the SimpleSelect.java program shows how to
use the SQLException class to catch Informix JDBC Driver or database server
errors using a try-catch block:

try
 {

PreparedStatement pstmt = conn.prepareStatement(“Select * from x where a = ?;”);
 pstmt.setInt(1, 11);
 ResultSet r = pstmt.executeQuery();

 while(r.next())
 {
 short i = r.getShort(1);
 System.out.println(“Select: column a = “ + i);
 }
 r.close();
 pstmt.close();
 }
catch (SQLException e)
 {
 System.out.println(“ERROR: Fetch statement failed: “ + e.getMessage());
 }

Retrieving Informix Error Message Text
Informix provides the class com.informix.jdbc.Message for retrieving the
Informix error message text based on the Informix error number. To use this
class, call the Java interpreter java directly, passing it an Informix error
number, as shown in the following example:

java com.informix.jdbc.Message 100

The example returns the message text for Informix error 100:

100: ISAM error: duplicate value for a record with unique key.

A positive error number is returned if you specify an unsigned number when
using the com.informix.jdbc.Message class. This differs from the finderr
utility, which returns a negative error number for an unsigned number.
2-32 IBM Informix JDBC Driver Programmer’s Guide

Internationalization
Internationalization
Internationalization allows you to develop software independently of the
countries or languages of its users and then to localize your software for
multiple countries or regions. Informix JDBC Driver extends the Java JDK 1.2
internationalization features by providing access to Informix databases that
are based on different locales and code sets.

JDK 1.1 and 1.2 Internationalization Support
Versions 1.1 and 1.2 of the JDK provide a rich set of APIs for developing global
applications. These internationalization APIs are based on the Unicode 2.0
code set and can adapt text, numbers, dates, currency, and user-defined
objects to any country’s conventions.

The internationalization APIs are concentrated in three packages:

■ The java.text package contains classes and interfaces for handling
text in a locale-sensitive way.

■ The java.io package contains new classes for importing and
exporting non-Unicode character data.

■ The java.util package contains the Locale class, the localization
support classes, and new classes for date and time handling.

For more information about JDK internationalization support, consult this
Web site:

http://java.sun.com/products/jdk/1.2/docs/guide/internat/intl.doc.html

Warning: There is no connection between JDK locales and JDK code sets: you must
keep these in agreement. For example, if you select the Japanese locale ja_JP, there is
no Java method that tells you that the SJIS code set is the most appropriate.

Support for Informix GLS Variables
For detailed information about Informix global language support (GLS), refer
to the Informix Guide to GLS Functionality.

Internationalization adds several new environment variables to Informix
JDBC Driver:
Programming with Informix JDBC Driver 2-33

Support for End-User Formats
■ DB_LOCALE

■ CLIENT_LOCALE

■ GL_DATE

■ DBDATE

■ DBCENTURY

The locale environment variables are available on and optional for Informix
servers that support GLS:

■ The DB_LOCALE variable specifies the locale of the database.
Informix JDBC Driver uses this variable to perform code set
conversion between Unicode and the database locale. The server
uses DB_LOCALE with CLIENT_LOCALE to establish the server
processing locale.

■ The CLIENT_LOCALE variable specifies the locale of the client that is
accessing the database. Informix JDBC Driver uses this variable only
to provide defaults for user-defined formats and to display error
messages.

If set, the CLIENT_LOCALE value establishes the server processing
locale to provide defaults for user-defined formats like the GL_DATE
format, and user-defined types can use it for code-set conversion.

The GL_DATE, DBDATE, and DBCENTURY variables are described in the
following section.

Important: The DB_LOCALE, CLIENT_LOCALE, and GL_DATE variables are
supported only if the server supports the Informix GLS feature. If these environment
variables are set and your application connects to a non-GLS server (server versions
earlier than 7.2), a connection exception occurs. If you connect to a non-GLS server,
the behavior is the same as for Informix JDBC Driver Version 1.22.

Support for End-User Formats
The end-user format is the format in which a date appears in a string variable.
This section describes the GL_DATE, DBDATE, and DBCENTURY variables,
which specify end-user formats.
2-34 IBM Informix JDBC Driver Programmer’s Guide

Support for End-User Formats
GL_DATE Variable

The GL_DATE environment variable specifies the end-user formats of values
in DATE columns. This variable is supported in Informix database servers
7.2x and beyond. A GL_DATE format string can contain the following
characters:

■ One or more white-space characters

■ An ordinary character (other than the % symbol or a white-space
character)

■ A formatting directive, which is composed of the % symbol followed
by one or two conversion characters that specify the required
replacement

There are two types of formatting directives: non-era-based and era-based.
The non-era-based time formatting directives are defined in the following
table.

Directive Replaced By

%a The abbreviated weekday name as defined in the locale

%A The full weekday name as defined in the locale

%b The abbreviated month name as defined in the locale

%B The full month name as defined in the locale

%C The century number (the year divided by 100 and truncated to an
integer) as a decimal number (00 through 99)

%d The day of the month as a decimal number (01 through 31). A single digit
is preceded by a zero (0)

%D Same as the %m/%d/%y format

%e The day of the month as a decimal number (1 through 31). A single digit
is preceded by a space

%h Same as the %b formatting directive

%iy The year as a two-digit decade (00 through 99). It is the Informix-specific
formatting directive for %y.

(1 of 2)
Programming with Informix JDBC Driver 2-35

Support for End-User Formats
Important: GL_DATE optional date format qualifiers for field specifications (for
example %4m to display a month as a decimal number with a maximum field width
of 4) are not supported.

The GL_DATE conversion modifier “O”, which indicates use of alternative digits for
alternative date formats, is not supported.

%iY The year as a four-digit decade (0000 through 9999). It is the Informix-
specific formatting directive for %Y.

%m The month as a decimal number (01 through 12)

%n A NEWLINE character

%t The TAB character

%w The weekday as a decimal number (0 through 6); 0 represents the locale
equivalent of Sunday.

%x A special date representation that the locale defines

%y The year as a two-digit decade (00 through 99)

%Y The year as a four-digit decade (0000 through 9999)

%% % (to allow % in the format string)

Directive Replaced By

(2 of 2)
2-36 IBM Informix JDBC Driver Programmer’s Guide

Support for End-User Formats
If a date string contains an era-based date, for example, 1998-09-29 A.D., the
GL_DATE environment variable must specify the era-based format of the
value to scan or display. You can use the directives in the following table to
indicate era-based date formatting, which the locale defines.

White space or other nonalphanumeric characters must appear between any
two formatting directives. If a GL_DATE variable format does not correspond
to any of the valid formatting directives, errors can result when the server
attempts to format the date.

For example, for a U.S. English locale, you can format an internal DATE value
for 09/29/1998 using the following format:

Sep 29, 1998 (Tuesday)

To create this format, set the GL_DATE environment variable to this value:

%b %d, %Y (%A)

To insert this date value into a database table that has a DATE column, you
can perform the following types of inserts:

Directive Description

%EC Accepts the full or abbreviated era name for scanning; for printing, %EC
is replaced by the full name of the base year (period) of the era that the
locale defines (same as %C if the locale does not define an era).

%Eg Accepts the full or abbreviated era name for scanning; for printing, %Eg
is replaced by the abbreviated name of the base year (period) of the era
that the locale defines (same as %C if the locale does not define an era).

%Ex Replaced by a special date representation for an era that the locale
defines (same as %x if the locale does not define an era).

%Ey Replaced by the offset from %EC of the era the locale defines. This date
is the era year only (same as %y if the locale does not define an era).

%EY Replaced by the full era year, which the locale defines (same as %Y if the
locale does not define an era).
Programming with Informix JDBC Driver 2-37

Support for End-User Formats
■ Nonnative SQL (enter the date value exactly as expected by the
GL_DATE setting).

Statement stmt = conn.createStatement();
String query = “create table tablename (date_col “ +

“date)”;
stmt.executeUpdate(query);
query = “insert into tablename values (’Sep 29, “ +

“1998 (Tuesday)’)”;
stmt.executeUpdate(query);

■ Native SQL (enter the date value in the JDBC escape format yyyy-mm-
dd; the value is converted to the GL_DATE format automatically).

Statement stmt = conn.createStatement();
String query = “create table tablename (date_col “ +

“date)”;
stmt.executeUpdate(query);
query = “insert into tablename values “ +

“({d ’1998-09-29’})”;
stmt.executeUpdate(query);

To retrieve the formatted GL_DATE DATE value from the database, call the
getString() method of the ResultSet class, as the following example shows:

ResultSet r = stmt.executeQuery(“select date_col from “ +
“tablename”);

while (r.next())
{
String datestr = r.getString(1);
}

To enter strings that represent dates into database table columns of CHAR,
VARCHAR, or LVARCHAR, you can also build date objects that represent the
date string value. The date string value must be in GL_DATE format.

Statement stmt = conn.createStatement();
String query = “create table tablename (char_col char(30))”;
stmt.executeUpdate(query);
query = “insert into tablename values (’Sep 29, 1998 “ +

“(Tuesday)’)”;
stmt.executeUpdate(query);
ResultSet r = stmt.executeQuery(“select char_col from “ +

“tablename”);
while (r.next())

{
java.sql.Date dateval = r.getDate(1);
}

2-38 IBM Informix JDBC Driver Programmer’s Guide

Support for End-User Formats
DBDATE Variable

The DBDATE environment variable specifies the end-user formats of values
in DATE columns. End-user formats are used in the following ways:

■ When you input DATE values, Informix products use the DBDATE
environment variable to interpret the input. For example, if you
specify a literal DATE value in an INSERT statement, Informix
database servers require this literal value to be compatible with the
format specified by the DBDATE variable.

■ When you display DATE values, Informix products use the DBDATE
environment variable to format the output.

With standard formats, you can specify the following attributes:

■ The order of the month, day, and year in a date

■ Whether the year is printed with two digits (Y2) or four digits (Y4)

■ The separator between the month, day, and year

The format string can include the following characters:

■ Hyphen (-), dot, (.), and slash (/) are separator characters in a
date format. A separator appears at the end of a format string (for
example Y4MD-).

■ A 0 indicates that no separator is displayed.

■ D and M are characters that represent the day and the month.

■ Y2 and Y4 are characters that represent the year and the number of
digits in the year.

The following format strings are valid standard DBDATE formats:

■ DMY2

■ DMY4

■ MDY4

■ MDY2

■ Y4MD

■ Y4DM

■ Y2MD

■ Y2DM
Programming with Informix JDBC Driver 2-39

Support for End-User Formats
The separator always goes at the end of the format string (for example,
DMY2/). If no separator or an invalid character is specified, the slash (/)
character is the default.

For the U.S. ASCII English locale, the default setting for DBDATE is Y4MD-,
where Y4 represents a four-digit year, M represents the month, D represents
the day, and hyphen (-) is the separator (for example, 1998-10-08).

For era-based dates such as EDMY2/, the E indicates a multibyte character
that represents the era name (if a locale supports eras).

To insert a date value into a database table with a DATE column, you can
perform the following types of inserts (the DBDATE value is MDY2-):

■ Nonnative SQL (enter the date value exactly as expected by the
DBDATE setting).

Statement stmt = conn.createStatement();
String query = “create table tablename (date_col “ +

“date)”;
stmt.executeUpdate(query);
query = “insert into tablename values (’08-10-98’)”;
stmt.executeUpdate(query);

■ Native SQL (enter the date value in the JDBC escape format yyyy-mm-
dd; the value is converted to the DBDATE format automatically).

Statement stmt = conn.createStatement();
String query = “create table tablename (date_col “ +

“date)”;
stmt.executeUpdate(query);
query = “insert into tablename values “ +

“({d ’1998-08-10’})”;
stmt.executeUpdate(query);

To retrieve the formatted DBDATE DATE value from the database, call the
getString method of the ResultSet class. For example:

ResultSet r = stmt.executeQuery(“select date_col from “ +
“tablename”);

while (r.next())
{
String datestr = r.getString(1);
}

2-40 IBM Informix JDBC Driver Programmer’s Guide

Precedence Rules Regarding DATE Value End-User Formats
To enter strings that represent dates into database table columns of CHAR,
VARCHAR, or LVARCHAR, you can build date objects that represent the date
string value. The date string value needs to be in DBDATE format. For
example:

Statement stmt = conn.createStatement();
String query = “create table tablename (char_col char(8))”;
stmt.executeUpdate(query);
query = “insert into tablename values (’08-10-98’)”;
stmt.executeUpdate(query);
ResultSet r = stmt.executeQuery(“select char_col from “ +

“tablename”);
while (r.next())

{
java.sql.Date dateval = r.getDate(1);
}

Important: Informix JDBC Driver does not support ALS 6.0, 5.0, or 4.0 era-based
formats in the DBDATE environment variable.

DBCENTURY Variable

The DBCENTURY environment variable enables you to choose the appro-
priate four-digit year expansion for DATE and DATETIME values that are
defined using a one- or two-digit year. See the Informix Guide to SQL: Reference
for detailed information about this environment variable.

Precedence Rules Regarding DATE Value End-User Formats
The precedence rules that define how to determine an end-user format for an
internal DATE value are listed here:

■ If a DBDATE format is specified, this format is used.
Programming with Informix JDBC Driver 2-41

Support for Code Set Conversion
■ If a GL_DATE format is specified, a locale must be determined:

❑ If a CLIENT_LOCALE value is specified, it is used in conjunction
with the GL_DATE format string to display DATE values.

❑ If a DB_LOCALE value is specified but a CLIENT_LOCALE value
is not, the DB_LOCALE value is compared with the database
locale (read from the systables table of the user database) to
verify that the DB_LOCALE value is valid. If the DB_LOCALE
value is valid, it is used in conjunction with the GL_DATE format
string to display DATE values. If the DB_LOCALE value is not
valid, the database locale is used in conjunction with the
GL_DATE format string.

❑ If neither CLIENT_LOCALE nor DB_LOCALE values are
specified, the database locale is used in conjunction with the
GL_DATE format string to display DATE values.

■ If a CLIENT_LOCALE value is specified, the DATE formats conform to
the default formats associated with this locale.

■ If a DB_LOCALE value is specified but no CLIENT_LOCALE value is
specified, the DB_LOCALE value is compared with the database
locale to verify that the DB_LOCALE value is valid. If the
DB_LOCALE value is valid, the DB_LOCALE default formats are
used. If the DB_LOCALE value is not valid, the default formats for
dates associated with the database locale are used.

■ If neither CLIENT_LOCALE nor DB_LOCALE values are specified, all
DATE values are formatted in U.S. English format, Y4MD-.

Support for Code Set Conversion
Code-set conversion converts character data from one code set (the source
code set) to another (the target code set). In a client/server environment,
character data might need to be converted from one code set to another if the
client and server computers use different code sets to represent the same
characters. You must specify code set conversion for the following types of
character data:

■ SQL data types (CHAR, VARCHAR, NCHAR, NVARCHAR)

■ SQL statements

■ Database objects such as database names, column names, table
names, statement identifier names, and cursor names
2-42 IBM Informix JDBC Driver Programmer’s Guide

Support for Code Set Conversion
■ Stored procedure text

■ Command text

■ Environment variables

Informix JDBC Driver converts character data as it is sent between client and
server. The code set (encoding) used for the conversion is specified in the
systables catalog for the opened database. With this feature, you can specify
DB_LOCALE and CLIENT_LOCALE values in the connection properties or
URL.

Unicode to Database Code Set

Java is Unicode based, so Informix JDBC Driver converts data between
Unicode and the Informix database code set. The code set conversion value
is extracted from the DB_LOCALE value specified at the time the connection
is made. If this DB_LOCALE value is incorrect, the database locale (stored in
the database systables catalog) is used in the connection and in the code set
conversion.

The DB_LOCALE value must be a valid Informix locale, with a valid Informix
code set name or number as shown in the compatibility table that follows.
The following table maps the supported JDK 1.2 encodings to Informix code
sets.

Informix Code Set Name Informix Code Set Number JDK Code Set

8859-1 819 8859_1

8859-2 912 8859_2

8859-3 57346 8859_3

8859-4 57347 8859_4

8859-5 915 8859_5

8859-6 1089 8859_6

8859-7 813 8859_7

8859-8 916 8859_8

8859-9 920 8859_9

(1 of 2)
Programming with Informix JDBC Driver 2-43

Support for Code Set Conversion
You cannot use an Informix locale with a code set where there is no JDK
supported encoding. This incorrect usage results in an Encoding not
supported error message.

ASCII 364 ASCII

sjis-s 932 SJIS

utf8 57372 UTF8

big5 57352 Big5

CP1250 1250 Cp1250

CP1251 1251 Cp1251

CP1252 1252 Cp1252

CP1253 1253 Cp1253

CP1254 1254 Cp1254

CP1255 1255 Cp1255

CP1256 1256 Cp1256

CP1257 1257 Cp1257

cp949 57356 Cp949

KS5601 57356 Cp949

ksc 57356 Cp949

ujis 57351 EUC_JP

gb 57357 ISO2022CN_GB

GB2312-80 57357 ISO2022CN_GB

cp936 57357 ISO2022CN_GB

Informix Code Set Name Informix Code Set Number JDK Code Set

(2 of 2)
2-44 IBM Informix JDBC Driver Programmer’s Guide

Support for Code Set Conversion
If the connection is made but the server returns a warning of a mismatch
between the DB_LOCALE value sent and the real value in the database
systables catalog, the correct database locale is automatically extracted from
the systables catalog and the client uses the correct JDK encoding for the
connection.

The following table shows the supported locales.

Supported Locales

ar_ae ar_bh ar_kw ar_om ar_qa

ar_sa bg_bg ca_es cs_cz da_dk

de_at de_ch de_de el_gr en_au

en_ca en_gb en_ie en_nz en_us

es_ar es_bo es_cl es_co es_cr

es_ec es_es es_gt es_mx es_pa

es_pe es_py es_sv es_uy es_ve

fi_fi fr_be fr_ca fr_ch fr_fr

hr_hr hu_hu is_is it_ch it_it

iw_il ja_jp ko_kr mk_mk nl_be

nl_nl no_no pl_pl pt_br pt_pt

ro_ro ru_ru sh_yu sk_sk sv_se

th_th tr_tr uk_ua zh_cn zh_tw
Programming with Informix JDBC Driver 2-45

Support for Code Set Conversion
Unicode to Client Code Set

Because the Unicode code set includes all existing code sets, the Java virtual
machine (JVM) must render the character using the platform’s local code set.
Inside the Java program, you must always use Unicode characters. The JVM
on that platform converts input and output between Unicode and the local
code set. For example, you specify button labels in Unicode, and the JVM
converts the text to display the label correctly. Similarly, when the getText()
method gets user input from a text box, the client program gets the string in
Unicode, no matter how the user entered it.

Never read a text file one byte at a time. Always use the InputStream-
Reader() or OutputStreamWriter() methods to manipulate text files. By
default, these methods use the local encoding, but you can specify an
encoding in the constructor of the class, as follows:

InputStreamReader = new InputStreamReader (in, "SJIS");

You and the JVM are responsible for getting external input into the correct
Java Unicode string. Thereafter, the database locale encoding is used to send
the data to and from the server.

Connecting to a Database with Non-ASCII Characters

If you do not specify the database name at connection time, the connection
must be opened with the correct DB_LOCALE value for the specified
database.

If CLOSE DATABASE and DATABASE dbname statements are issued, the
connection continues to use the original DB_LOCALE value to interpret the
database name, so if the DB_LOCALE value of the new database does not
match, an error is returned. In this case, the client program must close and
reopen the connection with the correct DB_LOCALE value for the new
database.

If you supply the database name at connection time, the DB_LOCALE value
must be set to the correct database locale.
2-46 IBM Informix JDBC Driver Programmer’s Guide

Support for Code Set Conversion
Code Set Conversion for TEXT Data Types

Informix JDBC Driver does not automatically convert code sets for TEXT,
BYTE, CLOB, and BLOB data types. You can covert the code set for TEXT data
by using the getBytes(), getString(), InputStreamReader(), and Output-
StreamWriter() methods. These methods take a code set parameter that
converts to and from Unicode and the specified code set. These methods are
covered in detail in Sun’s JDK documentation.

Here is sample code that shows how to convert a file from the client code set
to Unicode and then from Unicode to the database code set. When you
retrieve data from the database, you can use the same approach to convert the
data from the database code set to the client code set.

...
// File in client encoding
File infile = new File(“data.dat”);
// New converted file -database encoding
File outfile = new File(“data_conv.dat”);
...

// Convert data from client encoding to database encoding
try

{
String from = “SJIS”; // client encoding
String to = “8859_1”; // database encoding
convertFile(infile, outfile, from, to);
}

catch (Exception e)
{
System.out.println(“Failed to convert file”);
}

...

// Get length of converted file
int fileLength = (int) outfile.length();
fin = new FileInputStream(outfile);
pstmt.setAsciiStream(1 , fin, fileLength);
...

public static void convertFile(File infile, File outfile, String from,
String to) throws IOException
{
InputStream in = new FileInputStream(infile);
OutputStream out = new FileOutputStream(outfile);

Reader r = new BufferedReader(new InputStreamReader(in, from));
Writer w = new BufferedWriter(new OutputStreamWriter(out, to));

// Copy characters from input to output. The InputStreamReader converts
// from the input encoding to Unicode, and the OutputStreamWriter
Programming with Informix JDBC Driver 2-47

Handling Transactions
// converts from Unicode to the output encoding. Characters that can
// not be represented in the output encoding are output as ‘?’

char[] buffer = new char[4096];
int len;
while ((len = r.read(buffer)) != -1)

w.write(buffer, 0, len);
r.close();
w.flush();
w.close();
}

Handling Transactions
By default, all new Connection objects are in autocommit mode. This means
that a COMMIT statement is automatically executed after each statement that
is sent to the database server. To turn autocommit mode off for a connection,
explicitly call the Connection.setAutoCommit(false) method.

When autocommit mode is off, Informix JDBC Driver implicitly starts a new
transaction when the next statement is sent to the database server. This trans-
action lasts until the user issues a COMMIT or ROLLBACK statement. If the
user has already started a transaction by executing setAutoCommit(false),
and then calls setAutoCommit(false) again, the existing transaction
continues unchanged. The Java program must explicitly terminate the trans-
action by issuing either a COMMIT or a ROLLBACK statement before it drops
the connection to the database or the database server.

If the Java program sets autocommit mode on while inside a transaction,
Informix JDBC Driver rolls back the current transaction before it actually
turns autocommit mode on.

In a database that has been created with logging, if a COMMIT statement is
sent to the database server (either with the Connection.commit() method or
directly with an SQL statement) and autocommit mode is on, the error
-255 : Not in transaction is returned by the database server because
there is currently no user transaction started.

In a database created in ANSI mode, explicitly sending a COMMIT statement
to the database server commits an empty transaction. No error is returned
because the database server automatically starts a transaction before it
executes the statement if there is no user transaction currently open.
2-48 IBM Informix JDBC Driver Programmer’s Guide

Other Informix Extensions to the JDBC API
Other Informix Extensions to the JDBC API
This section describes the Informix-specific extensions to the JDBC API not
already covered in this guide. These extensions handle information that is
specific to Informix databases.

Another Informix extension, the com.informix.jdbc.Message class, is fully
described in “Handling Errors” on page 2-30.

Using the Informix SERIAL and SERIAL8 Data Types
Informix JDBC Driver provides support for the Informix SERIAL and SERIAL8
data types via the methods getSerial() and getSerial8(), which are part of the
implementation of the java.sql.Statement interface.

Since the SERIAL and SERIAL8 data types do not have an obvious mapping to
any JDBC API data types from the java.sql.Types class, you must import
Informix-specific classes into your Java program to be able to handle SERIAL
and SERIAL8 table columns. To do this, add the following import line to your
Java program:

import com.informix.jdbc.*

Use the getSerial() and getSerial8() methods after an INSERT statement to
return the serial value that was automatically inserted into the SERIAL or
SERIAL8 column of a table, respectively. The methods return 0 if any of the
following conditions are true:

■ The last statement was not an INSERT statement.

■ The table being inserted into does not contain a SERIAL or SERIAL8
column.

■ The INSERT statement has not executed yet.

If you execute the getSerial() or getSerial8() method after a CREATE TABLE
statement, the methods return 1 by default (assuming the new table includes
a SERIAL or SERIAL8 column). If the table does not contain a SERIAL or
SERIAL8 column, the methods return 0. If you assign a new serial starting
number, the methods return that number.
Programming with Informix JDBC Driver 2-49

Obtaining Driver Version Information
If you want to use the getSerial() and getSerial8() methods, you must cast the
Statement or PreparedStatement object to IfxStatement, the Informix-
specific implementation of the Statement interface. The following example
shows how to perform the cast:

PreparedStatement pStmt = conn.prepareStatement (“INSERT INTO ... “);
pStmt.executeUpdate();
int serial_number = ((IfxStatement)pStmt).getSerial();

If you want to insert consecutive serial values into a column of data type
SERIAL or SERIAL8, specify a value of 0 for the SERIAL or SERIAL8 column in
the INSERT statement. When the column is set to 0, the database server
assigns the next highest value.

For more detailed information about the Informix SERIAL and SERIAL8 data
types, refer to Informix Guide to SQL: Reference and Informix Guide to SQL:
Syntax. You can find the on-line version of both of these guides at
http://www.informix.com/answers.

Obtaining Driver Version Information
There are two ways to obtain version information about Informix JDBC
Driver: from your Java program, or from the UNIX or Windows command
line. The command line method also allows you to obtain the serial number
you provided when you installed the driver on your computer.

To get version information from your Java program

1. Import the Informix package com.informix.jdbc.* into your Java
program by adding the following line to the import section:

import com.informix.jdbc.*;

2. Invoke the static method IfxDriver.getJDBCVersion(). This method
returns a String object that contains the complete version of the
current Informix JDBC Driver.

An example of a version of Informix JDBC Driver is 1.22.JC1.

The IfxDriver.getJDBCVersion() method does not return the serial
number you provided during installation of the driver.

Important: For Version X.Y of Informix JDBC Driver, the JDBC API methods
Driver.getMajorVersion() and DatabaseMetaData.getDriverMajorVersion()
always return the value X. Similarly, the methods Driver.getMinorVersion() and
DatabaseMetaData.getDriverMinorVersion() always return the value Y.
2-50 IBM Informix JDBC Driver Programmer’s Guide

Using an HTTP Proxy Server
To get the version of Informix JDBC Driver from the command line, enter the
following command at the UNIX shell prompt or the Windows command
prompt:

java com.informix.jdbc.Version

The command also returns the serial number you provided when you
installed the driver. An example of a serial number is INF#J000000.

Using an HTTP Proxy Server
You might need to use an HTTP proxy server for these reasons:

■ Applets. Because of security restrictions in Web browsers, if an
applet is using Informix JDBC Driver, it can only connect to a
database running on the same host as the Web server. This restriction
is not always desirable, because both Web servers and database
servers can require extensive system resources.

■ Firewalls. Informix JDBC Driver cannot connect to a database from
behind a firewall. The firewall prevents the browser from connecting
to the database.

The solution to both these problems is to install Informix JDBC Driver on the
same computer as the Java applet and install the HTTP proxy as a middle tier
between the Java applet and Informix database machines.

The HTTP proxy feature is not part of the JDBC 2.0 specification. The HTTP
proxy is a lightweight servlet that receives HTTP packets from the JDBC client.
The proxy extracts SQL requests from the packet and transmits them to a
database server. The client (the end user) is unaware of this extra layer.

To specify a proxy, amend the URL statement:

CURRENT_JDBC_URL;proxy=web-server-host-name:port-number

Before creating the proxy servlet, you must copy two class files, IfxJDB-
CProxy.class and SessionMgr.class, to the servlet directory. These two class
files reside in the top-level directory proxy after the product bundle is
installed.
Programming with Informix JDBC Driver 2-51

Using an HTTP Proxy Server
The Web server must support servlets. (For example, the Sun and Apache
Java Web servers do.) Add the Web servlet to the Web server by specifying
the class of the proxy servlet.

To add a proxy servlet to a Java Web server

1. Go to the URL http://server-host-name:port-number using a Web
browser. The Java Web server administrator page appears.

2. Enter admin as the user followed by the administrator password to
log on to the Web server administrator management menu.

3. Select Web Service➞ Servlets➞ Add from the menu.

4. Specify the JDBC servlet name and class. Name the servlet for the
JDBC proxy IfxJDBCProxy.

This procedure makes the Web server aware of the proxy servlet. The servlet
must allow for some configuration, such as the ability to specify initialization
parameters. Example parameters are maximum number of connections, idle
time-out, possibly a default port and host, and even a properties file.

If the proxy servlet is invoked from an applet, the applet loads the servlet (if
the servlet is not loaded) when the applet sends a message to the servlet.

The following Web sites offer more information about proxy servlets:

■ http://jserv.javasoft.com/index.html

■ http://www.javasoft.com

■ http://www.sun.com/java

■ http://java.apache.org

Other ways to use Informix JDBC Driver in a multiple-tier environment are as
follows:

■ Remote method invocation (RMI). Informix JDBC Driver resides on
an application server that is a middle tier between the Java applet or
application and Informix database machines. An example of RMI is
included with Informix JDBC Driver; see Appendix A, “Sample Code
Files” for details.

■ Other communication protocols, such as CORBA. Informix JDBC
Driver resides on an application server that is a middle tier between
the Java applet or application and Informix database machines.
2-52 IBM Informix JDBC Driver Programmer’s Guide

Restrictions and Limitations
Restrictions and Limitations
The following JDBC API methods are not supported by Informix JDBC Driver
and cannot be used in a Java program that connects to an Informix database:

■ Connection.setCatalog()

■ Connection.setReadOnly()

■ Connection.isReadOnly()

■ Statement.setMaxFieldSize()

■ Statement.setQueryTimeout()

■ Statement.cancel()

■ PreparedStatement.setUnicodeStream()

■ CallableStatement.registerOutParameter()

■ ResultSet.getUnicodeStream()

The following JDBC API methods behave differently than specified by the
JavaSoft specification:

■ Statement.execute()

Method returns a single result set.

■ PreparedStatement.execute()

Method returns a single result set.

■ CallableStatement.execute()

Method returns a single result set.

■ ResultSetMetaData.getTableName()

Method always returns the value "".

■ ResultSetMetaData.getSchemaName()

Method always returns the value "".

■ ResultSetMetaData.getCatalogName()

Method always returns the value "".

■ ResultSetMetaData.isReadOnly()

Method always returns FALSE.
Programming with Informix JDBC Driver 2-53

Restrictions and Limitations
■ ResultSetMetaData.isWriteable()

Method always returns TRUE.

■ ResultSetMetaData.isDefinitelyWriteable()

Method always returns TRUE.
2-54 IBM Informix JDBC Driver Programmer’s Guide

3
Chapter
Troubleshooting
In This Chapter . 3-3

Debugging Your JDBC API Program 3-3
Using the Debug Version of the Driver. 3-3
Turning on Tracing 3-4

Performance Issues 3-5
Using the FET_BUF_SIZE Environment Variable 3-6
Memory Management of Large Objects 3-6
Reducing Network Traffic 3-8

3-2 IBM
 Informix JDBC Driver Programmer’s Guide

In This Chapter
This chapter provides troubleshooting tips for Informix JDBC Driver. It covers
the following topics:

■ “Debugging Your JDBC API Program”

■ “Performance Issues”

Debugging Your JDBC API Program
If your Java program contains JDBC API programming errors, you might
want to use the debug version of Informix JDBC Driver instead of the
optimized version to try to find where the errors occur in your program.

Using the Debug Version of the Driver
The debug version of Informix JDBC Driver, called ifxjdbc-g.jar, is exactly the
same as the optimized version (called ifxjdbc.jar), except that it has been
compiled with the -g option instead of the -O option.

The difference in compilation options also means that the debug version of
Informix JDBC Driver has been embedded with tracing information. When
you use the debug version of the driver, you can turn on tracing and get a
better idea of what the JDBC API portion of your Java program is actually
doing.

For instructions on how to use the debug version of Informix JDBC Driver in
a Java application or Java applet, refer to “Using the Driver in an Appli-
cation” on page 1-13 or “Using the Driver in an Applet” on page 1-14,
respectively.
Troubleshooting 3-3

Turning on Tracing
Turning on Tracing
Trace output consists of the following two kinds of information:

■ General information from Informix JDBC Driver

■ Informix native SQLI protocol messages sent between your Java
program and the Informix database server

To turn on tracing, specify the environment variables TRACE, TRACEFILE,
PROTOCOLTRACE, and PROTOCOLTRACEFILE in the database URL or the
property list when you establish a connection to an Informix database or
database server.

The following table describes the tracing environment variables.

Environment Variable Description

TRACE Traces general information from Informix JDBC Driver.

Can be set to one of the following levels:

■ 0. Tracing not enabled. This is the default value.

■ 1. Traces the entry and exit points of methods.

■ 2. Same as Level 1, except generic error messages are
also traced.

■ 3. Same as Level 2, except data variables are also traced.

TRACEFILE Specifies the full pathname of the operating system file on
the client computer to which the TRACE messages are
written.

(1 of 2)
3-4 IBM Informix JDBC Driver Programmer’s Guide

Performance Issues
The following example of a database URL specifies the highest level of
protocol tracing and sets tracing output to the operating system file
/tmp/trace.out:

String url = "jdbc:informix-
sqli://123.45.67.89:1533:informixserver=myserver;user=rdtest;password=test;
PROTOCOLTRACE=2;PROTOCOLTRACEFILE=/tmp/trace.out";

For more information on establishing a connection to an Informix database
or database server using a database URL or a property list, refer to “Estab-
lishing a Connection” on page 2-3.

Performance Issues
This section describes issues that might affect the performance of your
queries: the FET_BUF_SIZE environment variable, memory management of
the Informix TEXT and BYTE data types, memory management of the
Informix BLOB and CLOB data types, and reducing network traffic.

PROTOCOLTRACE Traces the SQLI protocol messages sent between your
Java program and the Informix database server.

Can be set to the following levels:

■ 0. Protocol tracing not enabled. This is the default
value.

■ 1. Traces message IDs.

■ 2. Same as Level 1, except the data in the message
packets is also traced.

PROTOCOLTRACFILE Specifies the full pathname of the operating system file on
the client computer to which the PROTOCOLTRACE
messages are written.

Environment Variable Description

(2 of 2)
Troubleshooting 3-5

Using the FET_BUF_SIZE Environment Variable
Using the FET_BUF_SIZE Environment Variable
When a SELECT statement is sent from a Java program to an Informix
database, the returned rows, or tuples, are stored in a tuple buffer in Informix
JDBC Driver. The default size of the tuple buffer is the larger of the returned
tuple size or 4096 bytes.

You can use the Informix FET_BUF_SIZE environment variable to override the
default size of the tuple buffer. Increasing the size of the tuple buffer can
reduce network traffic between your Java program and the database, often
resulting in better performance of queries.

FET_BUF_SIZE can be set to any positive integer less than or equal to 32,767.
If the FET_BUF_SIZE environment variable is set, and its value is larger than
the default tuple buffer size, the tuple buffer size is set to the value of
FET_BUF_SIZE.

There are times, however, when increasing the size of the tuple buffer can
actually degrade the performance of queries. This could happen if your Java
program has many active connections to a database or if the swap space on
your computer is limited. If this is true for your Java program or computer,
you might not want to use the FET_BUF_SIZE environment variable to
increase the size of the tuple buffer.

For more information on setting Informix environment variables, see “Estab-
lishing a Connection” on page 2-3.

Memory Management of Large Objects
Whenever a large object (a BYTE, TEXT, BLOB, or CLOB data type) is fetched
from the server, the data is either cached into memory or stored in a
temporary file (if it exceeds the memory buffer). A JDBC applet can cause a
security violation if it tries to create a temporary file on the local computer. In
this case, the entire large object must be stored in memory.

You can specify how large object data is stored using a user-defined
environment variable, LOBCACHE, that you include as one of the name-value
pairs in the URL syntax:
3-6 IBM Informix JDBC Driver Programmer’s Guide

Memory Management of Large Objects
■ To set the maximum number of bytes allocated in memory to hold
the data, set the LOBCACHE value to that number of bytes. If the data
size exceeds the LOBCACHE value, the data is stored in a temporary
file. If a security violation occurs during creation of this file, the data
is stored in memory.

■ To always store the data in a file, set the LOBCACHE value to 0. In this
case, if a security violation occurs, Informix JDBC Driver makes no
attempt to store the data in memory.

■ To always store the data in memory, set the LOBCACHE value to a
negative number. If the required amount of memory is not available,
Informix JDBC Driver throws the SQLException message Out of
Memory.

If the LOBCACHE size is invalid or not defined, the default size is 4096.

You can set the LOBCACHE value through the URL, as follows:

URL ="jdbc:158.58.9.37:711test:user=guest;password=iamaguest;
informixserver=oltapshm;lobcache=4096";

The preceding example stores the large object in memory if the size is 4096
bytes or fewer. If the large object exceeds 4096 bytes, Informix JDBC Driver
tries to create a temporary file. If a security violation occurs, memory is
allocated for the entire large object. If that fails, the driver throws an SQLEx-
ception message.

Here is another example:

URL = "jdbc:informix-sqli://icarus:7110/testdb:user=guest:passwd=whoknows;
informixserver=olserv01;lobcache=0";

The preceding example uses a temporary file for storing the fetched large
object.

Here is a third example:

URL = "jdbc:informix-sqli://icarus:7110/testdb:user=guest:passwd=whoknows;
informixserver=olserv01;lobcache=-1";

The preceding example always uses memory to store the fetched large object.

For programming information on how to use the TEXT, BYTE, CLOB, and
BLOB data types in a Java program, refer to “Manipulating Informix Large
Object Data Types” on page 2-15.
Troubleshooting 3-7

Reducing Network Traffic
Reducing Network Traffic
The two environment variables OPTOFC and IFX_AUTOFREE can be used to
reduce network traffic when you close Statement and ResultSet objects.

Set OPTOFC to 1 to specify that the ResultSet.close() method does not require
a network round-trip if all the qualifying rows have already been retrieved in
the client’s tuple buffer. The database server automatically closes the cursor
after all the rows have been retrieved.

Informix JDBC Driver might or might not have additional rows in the client’s
tuple buffer before the next ResultSet.next() method is called. Therefore,
unless Informix JDBC Driver has received all rows from the database server,
the ResultSet.close() method might still require a network round-trip when
OPTOFC is set to 1.

Set IFX_AUTOFREE to 1 to specify that the Statement.close() method does not
require a network round-trip to free the server cursor resources if the cursor
has already been closed in the database server.

The database server automatically frees the cursor resources right after the
cursor is closed, either explicitly by the ResultSet.close() method or
implicitly by the OPTOFC environment variable.

When the cursor resources have been freed, the cursor can no longer be
referenced.

For examples of how to use the OPTOFC and IFX_AUTOFREE environment
variables, see the autofree.java and optofc.java demonstration examples. In
these examples, the variables are set with the Properties.put() method.

For more information on setting Informix environment variables, refer to
“Establishing a Connection” on page 2-3.
3-8 IBM Informix JDBC Driver Programmer’s Guide

A
Appendix
Sample Code Files
This appendix lists and describes the code examples provided
with Informix JDBC Driver.

The main examples are located in the following directories:

■ $JDBCLOCATION/demo/basic

■ $JDBCLOCATION/demo/clob-blob

■ $JDBCLOCATION/demo/udt-distinct

JDBCLOCATION refers to the directory where you installed
Informix JDBC Driver.

Another set of examples is located in the directory $JDBCLO-
CATION/demo/stores7. A README file in the demo directory
explains the various demonstration files and how to execute
them.

An RMI example is located in the directory $JDBCLO-
CATION/demo/rmi. A README file in the demo directory
explains how to execute the example. ♦

The main examples are located in the following directories:

■ %JDBCLOCATION%\demo\basic

■ %JDBCLOCATION%\demo\clob-blob

■ %JDBCLOCATION%\demo\udt-distinct

JDBCLOCATION refers to the directory where you installed
Informix JDBC Driver.

UNIX

Windows

Another set of examples is located in the directory %JDBCLO-
CATION%\demo\stores7. A README file in the demo directory explains the
various demonstration files and how to execute them.

An RMI example is located in the directory %JDBCLOCATION%\demo\rmi.
A README file in the demo directory explains how to execute the example. ♦

The following table lists the files in the basic directory. For each code
example, the table displays the name of the Java program and a brief
description of what the program does.

Demo Program Name Description

autofree.java Shows how to use the AUTOFREE environment variable.

ByteType.java Shows how to insert into and select from a table that contains a column of data
type BYTE.

CreateDB.java Creates a database called testDB.

DBCENTURYSelect.java Shows how to retrieve a date string representation that has a four-digit year
expansion based on the DBCENTURY property value from the URL string.

DBConnection.java Creates connections to both a database and a database server.

DBDATESelect.java Shows how to retrieve a date object and a date string representation from the
database based on the DBDATE property value from the URL string.

DBMetaData.java Shows how to retrieve information about a database with the
DatabaseMetaData interface.

DropDB.java Drops a database called testDB.

GLDATESelect.java Shows how to retrieve a date object and a date string representation from the
database based on the GL_DATE property value from the URL string.

Interval.java Shows how to insert and select Informix INTERVAL data.

LOCALESelect.java Shows how to retrieve a date object and a date string representation from the
database based on the CLIENT_LOCALE property value from the URL string.

MultiRowCall.java Shows how to return multiple rows in a stored procedure call.

OptimizedSelect.java Shows how to use the FET_BUF_SIZE environment variable to adjust the
Informix JDBC Driver tuple buffer size.

(1 of 2)
A-2 IBM Informix JDBC Driver Programmer’s Guide

The following table lists the files in the clob-blob directory. For each code
example, the table displays the name of the Java program and a brief
description of what the program does.

optofc.java Shows how to use the OPTOFC environment variable.

PropertyConnection.java Shows how to specify connection environment variables via a property list.

RSMetaData.java Shows how to retrieve information about a result set with the ResultSet-
MetaData interface.

SimpleCall.java Shows how to call a stored procedure.

SimpleConnection.java Shows how to connect to a database or database server.

SimpleSelect.java Shows how to send a simple SELECT query to the database server.

TextType.java Shows how to insert into and select from a table that contains a column of data
type TEXT.

Demo Program Name Description

(2 of 2)

Demo Program Name Description

demo1.java Shows how to create two tables with BLOB and CLOB columns and compare
the data.

demo2.java Shows how to create one table with BYTE and TEXT columns and a second
table with BLOB and CLOB columns and how to compare the data.

demo3.java Shows how to create one table with BLOB and CLOB columns and a second
table with BYTE and TEXT columns and how to compare the data.

demo4.java Shows how to create two tables with BYTE and TEXT columns and compare the
data.

demo5.java Shows how to store data from a file into a BLOB table column.
Sample Code Files A-3

The following table lists the files in the udt-distinct directory. For each code
example, the table displays the name of the Java program and a brief
description of what the program does.

Demo Program Name Description

createDB.java Creates a database that the other udt-distinct demonstration files use.

createTypes.java Shows how to create opaque and distinct types in the database.

distinct_d1.java Shows how to create a distinct type.

dropDB.java Drops the database that the other udt-distinct demonstration files use.

udt_d1.java Shows how to create a fixed-length opaque type.
A-4 IBM Informix JDBC Driver Programmer’s Guide

Glossary
Glossary
applet A program created with Java classes that is not intended to be
run on its own, but rather to be embedded in another applica-
tion, such as a browser.

autocommit
mode

Mode in which a COMMIT statement is automatically executed
after each statement sent to the database server.

BLOB A smart large object data type that stores any kind of binary data,
including images. The database server performs no interpreta-
tion on the contents of a BLOB column.

See also smart large object.

blobpage The unit of disk allocation within a blobspace. The size of a
blobpage is determined by the DBA and can vary from blobspace
to blobspace.

blobspace A logical collection of chunks that is used to store TEXT and BYTE
data.

built-in data type A fundamental data type defined by the database server: for
example, INTEGER, CHAR, or SERIAL8.

BYTE A built-in data type for a simple large object that stores any type
of binary data and can be as large as 231 bytes.

cast A mechanism that the database server uses to convert data from
one data type to another. The server provides built-in casts that
it performs automatically. Users can create both implicit and
explicit casts.

See also explicit cast, implicit cast.

cast function A function that is used to implement an implicit or explicit cast. A cast func-
tion performs the necessary operations for conversion between two data
types. It must be registered as a cast with the CREATE CAST statement before
it can be used.

CLASSPATH An environment variable that tells the Java virtual machine (JVM) and other
applications where to find the Java class libraries used in a Java program.

CLOB A smart large object data type that stores blocks of text items, such as ASCII
or PostScript files.

See also smart large object.

code set A character set of one or more natural-language alphabets with symbols for
digits, punctuation, and diacritical marks. Each character set has at least one
code set, which maps its characters to unique bit patterns. ASCII, ISO8559-1,
Microsoft 1252, and EBCDIC are examples of code sets for the English lan-
guage.

concurrency The ability of two or more processes to access the same database
simultaneously.

connection An association between an application and a database environment, created
by a CONNECT or DATABASE statement. Database servers can also have con-
nections to one another.

See also explicit connection, implicit connection.

CORBA (Common Object Request Broker Architecture) The CORBA 2.0 specification
describes a convention called Object Request Broker (ORB), the infrastructure
for distributed-object computing. CORBA enables client applications to com-
municate with remote objects and invoke operations statically or dynami-
cally.

database URL URL passed to the DriverManager.getConnection() method that specifies the
subprotocol (the database connectivity mechanism), the database or database
server identifier, and a list of properties that can include Informix environ-
ment variables.

data type See built-in data type, extended data type.
2 IBM Informix JDBC Driver Programmer’s Guide

dbspace A logical collection of one or more chunks of contiguous disk space within
which you store databases and tables. Because chunks represent specific
regions of disk space, the creators of databases and tables can control where
their data is physically located by placing databases or tables in specific
dbspaces. Large objects are stored in sbspaces.

delimiter The boundary of an input field, or the terminator for a database column or
row. Some files and prepared objects require a semicolon (;), comma (,),
pipe (|), space, or tab delimiters between statements.

distinct data type A data type that is created with the CREATE DISTINCT TYPE statement. A dis-
tinct data type is based on an existing opaque, built-in, or distinct data type,
known as its source type. The distinct data type has the same internal storage
representation as its source type, but it has a different name. To compare a
distinct data type with its source type requires an explicit cast. A distinct data
type inherits all routines that are defined on its source type.

explicit cast A cast that requires a user to specify the CAST AS keyword or cast operator
(::) to convert data from one data type to another. An explicit cast requires a
function if the internal storage representations of the two data types are not
equivalent.

explicit
connection

A connection made to a database environment that uses the CONNECT
statement.

See also implicit connection.

extended data
type

A term used to refer to data types that are not built-in, such as opaque data
types and distinct data types.

fundamentaldata
type

A data type that cannot be broken into smaller pieces by the database server
using SQL statements: for example, built-in data types and opaque data
types.

Global Language
Support (GLS)

An application environment that allows Informix application-programming
interfaces (APIs) and database servers to handle different languages, cultural
conventions, and code sets. Developers use the GLS libraries to manage all
string, currency, date, and time data types in their code. Using GLS, you can
add support for a new language, character set, and encoding by editing
resource files, without access to the original source code, and without
rebuilding the client software.
Glossary 3

host variable A C or COBOL program variable that is referenced in an embedded statement.
A host variable is identified by the dollar sign ($) or colon (:) that precedes
it.

implicit cast A cast that the database server automatically performs to convert data from
one data type to another.

See also explicit cast.

implicit
connection

A connection made using a database statement (DATABASE, CREATE
DATABASE, START DATABASE, DROP DATABASE).

See also explicit connection.

IP address Unique ID of every computer on the Internet. The format consists of four
numerical strings separated by dots, such as 123.45.67.89.

jar utility A JavaSoft utility that creates Java archive, or JAR, files. JAR is a platform-
independent file format that aggregates many files into one.

keyword A word that has meaning to a programming language. In Informix SQL, key-
words are shown in syntax diagrams in all uppercase letters. They must be
used in SQL statements exactly as shown in the syntax although they can be
in either uppercase or lowercase letters.

large object A data object that exceeds 255 bytes in length. A large object is logically
stored in a table column but physically stored independently of the column,
because of its size. Large objects can contain non-ASCII data. The Universal
Data Option recognizes two kinds of large objects: simple large objects (TEXT,
BYTE) and smart large objects (CLOB, BLOB).

See also simple large object, smart large object.

locale A set of files that define the native-language behavior of the program at run-
time. The rules are usually based on the linguistic customs of the region or
the territory. The locale can be set through an environment variable that dic-
tates output formats for numbers, currency symbols, dates, and time as well
as collation order for character strings and regular expressions.

See also Global Language Support (GLS).

LVARCHAR A built-in data type that stores varying-length character data greater than 256
bytes. It is used for input and output casts for opaque data types. LVARCHAR
supports code-set order for comparisons of character data.
4 IBM Informix JDBC Driver Programmer’s Guide

metadata Data about data. Metadata provides information about data in the database
or used in the application. Metadata can be data attributes, such as name,
size, and data type, or descriptive information about data.

opaque data type A fundamental data type of a predefined fixed or variable length whose
internal structure is not accessible through SQL statements.. Opaque data
types are created with the SQL statement CREATE OPAQUE TYPE. Support
functions must always be defined for opaque types.

RMI (Remote Method Invocation) A method for creating distributed Java-to-Java
applications, in which the methods of remote Java objects can be invoked
from other Java virtual machines, possibly on different hosts.

servlet An extension method for many common protocols, especially HTTP. Servlets
are modules that run inside request/response oriented servers. Servlets are
similar to applets in that their classes might be dynamically loaded, either
across the network or from local storage. However, servlets differ from
applets in that they lack a graphical interface.

simple large
object

A large object that is stored in a blobspace, is not recoverable, and does not
obey transaction isolation modes. Simple large objects include TEXT and
BYTE data types.

See also TEXT, BYTE.

smart large
object

A large object that:

■ is stored in an sbspace, a logical storage area that contains one or more
chunks.

■ has read, write, and seek properties similar to a UNIX file.

■ is recoverable.

■ obeys transaction isolation modes.

■ can be retrieved in segments by an application.

Smart large objects include CLOB and BLOB data types.

SQLSTATE A variable that contains status values about the outcome of SQL statements.

support functions The functions that the database server automatically invokes to process a
data type.
Glossary 5

The database server uses a support function to perform operations (such as
converting to and from the internal, external, and binary representations of
the type) on opaque data types.

An index access method uses a support function in an operator class to per-
form operations (such as building or searching) on an index.

sysmaster
database

A master database created and maintained by every Informix database
server. The sysmaster database contains the ON-Archive catalog tables and
system monitoring interface (SMI) tables. Informix recommends you do not
modify this database.

system catalog A group of database tables that contain information about the database itself,
such as the names of tables or columns in the database, the number of rows
in a table, the information about indexes and database privileges, and so on.

system-defined
cast

A cast that is built into the database server. A system-defined cast performs
automatic conversions between different built-in data types.

TEXT A built-in data type for a simple large object that stores text data and can be
as large as 231 bytes.

tuple buffer The section of Informix JDBC Driver memory that stores the retrieved rows
from a SELECT statement.
6 IBM Informix JDBC Driver Programmer’s Guide

Error
Messages
Error Messages
-79700 Method not supported

Informix JDBC Driver does not support this JDBC method.

-79702 Can’t create new object

The software could not allocate memory for a new String object.

-79703 Row/column index out of range

The row or column index is out of range. Compare the index to
the number of rows and columns expected from the query to
ensure that it is within range.

-79704 Can’t load driver

Informix JDBC Driver could not create an instance of itself and
register it in the DriverManager class. The rest of the SQLEx-
ception text describes what failed.

-79705 Incorrect URL format

The URL you have submitted is invalid. Informix JDBC Driver
does not recognize the syntax. Check the syntax and try again.

-79708 Can’t take null input

The string you have provided is null. Informix JDBC Driver does
not understand null input in this case. Check the input string to
ensure that it has the proper value.

-79709 Error in date format

The expected input is a valid date string in the following format: yyyy-mm-dd.
Check the date and verify that it has a four-digit year, followed by a valid
two-digit month and two-digit day. The delimiter must be a hyphen (-).

-79710 Syntax error in SQL escape clause

Invalid syntax was passed to a JDBC escape clause. Valid JDBC escape clause
syntax is demarcated by curly braces and a keyword, for example: {keyword
syntax}. Check the JDBC 2.0 documentation from Sun Microsystems for a list
of valid escape clause keywords and syntax.

-79711 Error in time format

An invalid time format was passed to a JDBC escape clause. The escape clause
syntax for time literals has the following format: {t ’hh:mm:ss’}.

-79712 Error in timestamp format

An invalid timestamp format was passed to a JDBC escape clause. The escape
clause syntax for timestamp literals has the following format: {ts ’yyyy-mm-
dd hh:mm:ss.f...’}.

-79713 Incorrect number of arguments

An incorrect number of arguments was passed to the scalar function escape
syntax. Here is the correct syntax: {fn function(arguments)}. Verify that the
correct number of arguments was passed to the function.

-79714 Type not supported

You have specified a data type that is not supported by Informix JDBC Driver.
Check your program to make sure the data type used is among those
supported by the driver.

-79715 Syntax error

Invalid syntax was passed to a JDBC escape clause. Valid JDBC escape clause
syntax is demarcated by curly braces and a keyword: {keyword syntax}. Check
the JDBC 2.0 documentation from Sun Microsystems for a list of valid escape
clause keywords and syntax.
2 IBM Informix JDBC Driver Programmer’s Guide

-79716 System or internal error

An operating or runtime system error or a driver internal error occurred. The
accompanying message describes the problem.

-79726 Null SQL statement

The SQL statement passed in was null. Check the SQL statement string of
your program to make sure it contains a valid statement.

-79727 Statement was not prepared

The SQL statement was not prepared properly. If you use host variables (for
example, insert into mytab values (?, ?);) in your SQL statement, you
must use connection.prepareStatement() to prepare the SQL statement
before you can execute it.

-79729 Method cannot take argument

The method does not take an argument. Refer to your Java API specification
or the appropriate section of this guide to make sure you are using the
method properly.

-79730 Connection not established

A connection was not established. You must obtain the connection by calling
the DriverManager.getConnection() method first.

-79731 MaxRows out of range

You have specified an out-of-range maxRow value. Make sure you specify a
value between 0 and Integer.MAX_VALUE.

-79732 Illegal cursor name

The cursor name specified is illegal. Make sure the string passed in is not null
or empty.

-79733 No active result

The statement does not contain an active result. Check your program logic to
make sure you have called the executeXXX() method before you attempt to
refer to the result.
Error Messages 3

-79734 INFORMIXSERVER has to be specified

INFORMIXSERVER is a property required for connecting to an Informix
database. You can specify it in the URL or as part of a Properties object that is
passed to the connect() method.

-79735 Can’t instantiate protocol

An internal error occurred during a connection attempt. Call Informix
Technical Support.

-79736 No connection/statement establish yet

There is no current connection or statement. Check your program to make
sure a connection was properly established or a statement was created.

-79737 No meta data

There is no metadata available for this SQL statement. Make sure the
statement generates a result set before you attempt to use it.

-79738 No such column name

The column name specified does not exist. Make sure the column name is
correct.

-79739 No current row

The cursor is not properly positioned. You must first position the cursor
within the result set by using a method such as resultset.next(),
resultset.beforefirst(), resultset.first(), or resultset.absolute().

-79740 No statement created

There is no current statement. Make sure the statement was properly created.

-79741 Can’t convert to

There is no data conversion possible from the column data type to the one
specified. The actual data type is appended to the end of this message.
Review your program logic to make sure that the conversion you have asked
for is supported. Refer to “Mapping Data Types” on page 2-26 for the data
mapping matrix.
4 IBM Informix JDBC Driver Programmer’s Guide

-79742 Can’t convert from

No data conversion is possible from the data type you specified to the
column data type. The actual data type is appended to the end of this
message. Check your program logic to make sure that the conversion you
have asked for is supported. Refer to “Mapping Data Types” on page 2-26 for
the data mapping matrix.

-79743 Cannot load the specified IfxProtocol class

This message occurs when Informix JDBC Driver cannot create a new instance
of the Connection class when connecting to the Informix server. Check the
SQLException message for more details.

-79744 Transactions not supported

The user has tried to call commit() or rollback() on a database that does not
support transactions, or has tried to set autoCommit to false on a non-
logging database. Verify that the current database has the correct logging
mode and review the program logic.

-79745 Read only mode not supported

Informix does not support read-only mode.

-79746 No Transaction Isolation on non-logging db’s

Informix does not support setting the transaction isolation level on non-
logging databases.

-79747 Invalid transaction isolation level

If the server could not complete the rollback, this error occurs. See the rest of
the SQLException message for more details about why the rollback failed.

This error also occurs if an invalid transaction level is passed to setTransac-
tionIsolation(). The valid values are:

■ TRANSACTION_READ_UNCOMMITTED

■ TRANSACTION_READ_COMMITTED

■ TRANSACTION_REPEATABLE_READ

■ TRANSACTION_SERIALIZABLE
Error Messages 5

-79748 Can’t lock the connection

Informix JDBC Driver normally locks the connection object just before
beginning the data exchange with the server. The driver could not obtain the
lock. Only one thread at a time should use the connection object.

-79749 Number of input values does not match number of question marks

The number of bind variables that you set using the Prepared-
Statement.setXXX() methods in this statement does not match the number of
? placeholders that you wrote into the statement. Locate the text of the
statement and verify the number of placeholders, then check the calls to
PreparedStatement.setXXX().

-79750 Method only for queries

The Statement.executeQuery(String) and PreparedStatement.execute-
Query() methods should only be used if the statement is a SELECT statement.
For other statements, use the Statement.execute(String), Statement.execute-
Batch(), Statement.executeUpdate(String), Statement.getUpdateCount(),
Statement.getResultSet(), or PreparedStatement.executeUpdate() method.

-79755 Object is null.

The object passed in is null. Check your program logic to make sure your
object reference is valid.

-79756 must start with ’jdbc’

The first token of the URL must be the keyword JDBC (case insensitive). For
example:

URL: jdbc:informix-sqli://mymachine:1234/mydatabase:user=me:password=secret

-79757 Invalid sub-protocol

The current valid subprotocol supported by Informix is informix-sqli.

-79758 Invalid ip address

When you connect to an Informix server via an IP address, the IP address
must be valid. A valid IP address is set of four numbers between 0 and 255,
separated by dots (.): for example, 127.0.0.1.
6 IBM Informix JDBC Driver Programmer’s Guide

-79759 Invalid port number

The port number must be a valid four-digit number, as follows:

URL: jdbc:informix-sqli://mymachine:1234/mydatabase:user=me:password=secret

In this example, 1234 is the port number.

-79760 Invalid database name

This statement contains the name of a database in some invalid format.

The maximum length for database names and cursor names depends on the
version of the database server. In 7.x, 8.x, and 9.1x versions of the Informix
database server, the maximum length is 18 characters.

For INFORMIX-SE, database names should be no longer than 10 characters
(fewer in some host operating systems).

Both database and cursor names must begin with a letter and contain only
letters, numbers, and underscore characters. In the 6.0 and later versions of
the database server, database and cursor names can begin with an
underscore.

In MS-DOS systems, filenames can be a maximum of eight characters plus a
three-character extension.

-79761 Invalid Property format

The URL accepts property values in key=value pairs. For example,
user=informix:password=informix adds the key=value pairs to the list of
properties that are passed to the connection object. Check the syntax of the
key=value pair for syntax errors. Make sure there is only one = sign; that
there are no spaces separating the key, value, or =; and that key=value pairs
are separated by one colon(:), again with no spaces.

-79762 Attempt to connect to a non 5.x server

When connecting to a Version 5.x server, the user must set the URL property
USE5SERVER to any non-NULL value. If a connection is then made to a
version 6 or later server, this exception is thrown. Verify that the version of
the server is correct and modify the URL as needed.
Error Messages 7

-79771 Input value is not valid

The input value is not accepted for this data type. Make sure this is a valid
input for this data type.

-79774 Unable to create local file

Large object data read from the server can be stored either in memory or in a
local file. If the LOBCACHE value is 0 or the large object size is greater than
the LOBCACHE value, the large object data from the server is always stored
in a file. In this case, if a security exception occurs, Informix JDBC Driver
makes no attempt to store the large object into memory and throws this
exception.

-79782 Method can be called only once

Make sure methods like Statement.getUpdateCount() and Statement.getRe-
sultSet() are called only once per result.

-79783 Encoding or code set not supported

The encoding or code set entered in the DB_LOCALE or CLIENT_LOCALE
variable is not valid. Check “Internationalization” on page 2-33 for valid
code sets.

-79784 Locale not supported

The locale entered in the DB_LOCALE or CLIENT_LOCALE variable is not
valid. Check “Internationalization” on page 2-33 for valid locales.

-79785 Unable to convert JDBC escape format date string to localized date string

The JDBC escape format for date values must be specified in this format: {d
’yyyy-mm-dd’}. Verify that the JDBC escape date format specified is correct.
Verify the DBDATE and GL_DATE settings for the correct date string format
if either of these was set to a value in the connection URL string or property
list.
8 IBM Informix JDBC Driver Programmer’s Guide

-79786 Unable to build a Date object based on localized date string representation

The localized date string representation specified in a CHAR, VARCHAR, or
LVARCHAR column is not correct, and a date object cannot be built based on
the year, month, and day values. Verify that the date string representation
conforms to the DBDATE or GL_DATE date formats if either one of these is
specified in a connection URL string or property list. If neither DBDATE or
GL_DATE is specified but a CLIENT_LOCALE or DB_LOCALE is explicitly set
in a connection URL string or property list, verify that the date string repre-
sentation conforms to the JDK short default format (DateFormat.SHORT).

-79788 User name must be specified

The user name is required to establish a connection with Informix JDBC
Driver. Make sure you pass in user=your_user_name as part of the URL or one
of the properties.

-79789 Server does not support GLS variables DB_LOCALE, CLIENT_LOCALE or
GL_DATE

These variables can only be used if the server supports GLS. Check the
documentation for your server version and omit these variables if they are
not supported.

-79797 DBDATE setting must be at least 4 characters and no longer than 6 characters.

This error occurs because the DBDATE format string that is passed to the
server either has too few characters or too many. To fix the problem, verify
the DBDATE format string with the user documentation and make sure that
the correct year, month, day, and possibly era parts of the DBDATE format
string are correctly identified.

-79798 A numerical year expansion is required after 'Y' character in DBDATE string.

This error occurs because the DBDATE format string has a year designation
(specified by the character Y), but there is no character following the year
designation to denote the numerical year expansion (2 or 4). To fix the
problem, modify the DBDATE format string to include the numerical year
expansion value after the Y character.
Error Messages 9

-79799 An invalid character is found in the DBDATE string after the 'Y' character.

This error occurs because the DBDATE format string has a year designation
(specified by the character Y), but the character following the year desig-
nation is not a 2 or 4 (for two-digit years and four-digit years, respectively).
To fix the problem, modify the DBDATE format string to include the required
numerical year expansion value after the Y character. Only a 2 or 4 character
should immediately follow the Y character designation.

-79800 No 'Y' character is specified before the numerical year expansion value.

This error occurs because the DBDATE format string has a numerical year
expansion (2 or 4 to denote two-digit years or four-digit years, respectively),
but the year designation character (Y) was not found immediately before the
numerical year expansion character specified. To fix the problem, modify the
DBDATE format string to include the required Y character immediately before
the numerical year expansion value requested.

-79801 An invalid character is found in DBDATE format string.

This error occurs because the DBDATE format string has a character that is
not allowed. To fix the problem, modify the DBDATE format string to only
include the correct date part designations: year (Y), numerical year expansion
value (2 or 4), month (M), and day (D). Optionally, you can include an era
designation (E) and a default separator character (hyphen, dot, or slash)
which is specified at the end of the DBDATE format string. Refer to the user
documentation for further information on correct DBDATE format string
character designations.

-79802 Not enough tokens are specified in the string representation of a date value.

This error occurs because the date string specified does not have the
minimum number of tokens or separators needed to form a valid date value
(composed of year, month, and day numerical parts). For example, 12/15/98
is a valid date string representation with the slash character as the separator
or token. But 12/1598 is not a valid date string representation, because there
are not enough separators or tokens. To fix the problem, modify the date
string representation to include a valid format for separating the day, month,
and year parts of a date value.
10 IBM Informix JDBC Driver Programmer’s Guide

-79803 Date string index out of bounds during date format parsing to build Date
object.

This error occurs because there is not a one-to-one correspondence between
the date string format required by DBDATE or GL_DATE and the actual date
string representation you defined. For example, if GL_DATE is set to %b %D
%y and you specify a character string of Oct, there is a definite mismatch
between the format required by GL_DATE and the actual date string. To fix
the problem, modify the date string representation of the DBDATE or
GL_DATE setting so that the date format specified matches one-to-one with
the required date string representation.

-79804 No more tokens are found in DBDATE string representation of a date value.

This error occurs because the date string specified does not have any more
tokens or separators needed to form a valid date value (composed of year,
month, and day numerical parts) based on the DBDATE format string. For
example, 12/15/98 is a valid date string representation when DBDATE is set
to MDY2/. But 12/1598 is not a valid date string representation, because
there are not enough separators or tokens. To fix the problem, modify the
date string representation to include a valid format for separating the day,
month, and year parts of a date value based on the DBDATE format string
setting.

-79805 No era designation found in DBDATE/GL_DATE string representation of date
value.

This error occurs because the date string specified does not have a valid era
designation as required by the DBDATE or GL_DATE format string setting.
For example, if DBDATE is set to Y2MDE-, but the date string representation
specified by the user is 98-12-15, this is an error because there is no era
designation at the end of the date string value. To fix the problem, modify the
date string representation to include a valid era designation based on the
DBDATE or GL_DATE format string setting. In the above example, a date
string representation of 98-12-15 AD would probably suffice depending on
the locale.
Error Messages 11

-79806 Numerical day value can not be determined from date string based on
DBDATE.

This error occurs because the date string specified does not have a valid
numerical day designation as required by the DBDATE format string setting.
For example, if DBDATE is set to Y2MD-, but the date string representation
you specify is 98-12-blah, this is an error, because blah is not a valid
numerical day representation. To fix the problem, modify the date string
representation to include a valid numerical day designation (1-31) based on
the DBDATE format string setting.

-79807 Numerical month value can not be determined from date string based on
DBDATE.

This error occurs because the date string specified does not have a valid
numerical month designation as required by the DBDATE format string
setting. For example, if DBDATE is set to Y2MD-, but the date string represen-
tation you specify is 98-blah-15, this is an error, because blah is not a valid
numerical month representation. To fix the problem, modify the date string
representation to include a valid numerical month designation (1-12) based
on the DBDATE format string setting.

-79808 Not enough tokens specified in %D directive representation of date string.

This error occurs because the date string specified does not have the correct
number of tokens or separators needed to form a valid date value based on
the GL_DATE %D directive (mm/dd/yy format). For example, 12/15/98 is a
valid date string representation based on the GL_DATE %D directive, but
12/1598 is not a valid date string representation, because there are not
enough separators or tokens. To fix the problem, modify the date string repre-
sentation to include a valid format for the GL_DATE %D directive.

-79809 Not enough tokens specified in %x directive representation of date string.

This error occurs because the date string specified does not have the correct
number of tokens or separators needed to form a valid date value based on
the GL_DATE %x directive (format required is based on day, month, and year
parts, and the ordering of these parts is determined by the specified locale).
For example, 12/15/98 is a valid date string representation based on the
GL_DATE %x directive for the U.S. English locale, but 12/1598 is not a valid
date string representation, because there are not enough separators or tokens.
To fix the problem, modify the date string representation to include a valid
format for the GL_DATE %x directive based on the locale.
12 IBM Informix JDBC Driver Programmer’s Guide

@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Index
A
Accessing a database remotely 2-51
ANSI compliance

level Intro-10
APPLET tag 1-15
Applets and database access 2-51
ARCHIVE attribute of APPLET

tag 1-15
Autocommit 2-48
AUTOFREE environment

variable A-2
autofree.java example

program 3-8, A-2
Automatically freeing the

cursor 3-8

B
BLOB data type

caching 2-16, 3-6
examples for

data inserts and updates 2-16
data retrieval 2-19

extensions for 2-15
Boldface type Intro-6
BOOLEAN data type 2-23, 2-29
Browsers 1-14
BYTE data type

caching 3-6
examples for

data inserts and updates 2-16
data retrieval 2-19

extensions for 2-15
ByteType.java example

program 2-18, 2-20, A-2

C
Caching large objects 3-6
CallableStatement interface 2-15
cancel() method 2-53
Catalogs

Informix JDBC Driver
interpretation 2-15

systables 2-43, 2-45
Classes

IfxDriver 2-4
IfxJDBCProxy 2-51, 2-52
Locale 2-33
Message 2-32
Properties 2-10
ResultSet 2-38, 2-40
SessionMgr 2-51
SQLException 2-30, 2-32
Version 2-51

CLASSPATH environment
variable 1-13

Class.forName() method 2-4
Client hosts, specifying the locale

of 2-34
CLIENT_LOCALE environment

variable 2-11, 2-34, 2-42
CLOB data type

caching 2-16, 3-6
examples for

data inserts and updates 2-16
data retrieval 2-19

extensions for 2-15
close() method 2-24
Code sets

conversion of 2-42, 2-47
synchronizing with locales 2-33
table of 2-43

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Comment icons Intro-7
Compliance with industry

standards Intro-10
Concurrency, and multiple

threads 2-24
Connection interface 2-25, 2-48
Connections

creating 2-4, 2-8
establishing 2-3
to a database with non-ASCII

characters 2-46
Contents of Informix JDBC

Driver 1-6
CORBA 2-52
CreateDB.java example

program A-2
createDB.java example

program A-4
createTypes.java example

program A-4
Creating a connection 2-4, 2-8
Cursors, automatically freeing 3-8

D
Data types

BLOB 2-15, 3-6
BOOLEAN 2-23, 2-29
BYTE 2-15, 3-6
CLOB 2-15, 3-6
DATETIME 2-28
distinct 2-23
INTERVAL 2-21
LVARCHAR 2-23, 2-28
mapping between Informix and

JDBC API 2-26
opaque 2-23
SERIAL 2-49
SERIAL8 2-49
TEXT 2-15, 3-6

Database server name, setting in
database URLs 2-7

DatabaseMetaData interface 2-14,
2-50

Databases
names of, setting in database

URLs 2-6
querying 2-15

remote access options 2-51
specifying the locale of 2-34
URL 2-5
with non-ASCII characters 2-46

Dates
DBDATE formats of 2-39
eras in 2-37
formatting directives for 2-35,

2-37
inserting values 2-37, 2-40
native SQL formats of 2-38, 2-40
nonnative SQL formats of 2-38,

2-40
precedence rules for end-user

formats 2-41
represented by strings 2-38
retrieving values 2-38, 2-40
support for end-user formats 2-34

DATETIME type 2-28
DBANSIWARN environment

variable 2-11
DBCENTURY environment

variable 2-11, 2-41
DBCENTURYSelect.java example

program A-2
DBConnection.java example

program 2-8, A-2
DBDATE environment

variable 2-11, 2-39, 2-41
DBDATESelect.java example

program A-2
DBMetaData.java example

program A-2
DBSPACETEMP environment

variable 2-11
DBUPSPACE environment

variable 2-11
DB_LOCALE environment

variable 2-11, 2-34, 2-42
Deallocating resources 2-24
Debugging 3-3
Default locale Intro-5
DELIMIDENT environment

variable 2-11
demo1.java example program A-3
demo2.java example program A-3
demo3.java example program A-3
demo4.java example program A-3
demo5.java example program A-3

Directives, formatting, for
dates 2-35, 2-37

Distinct data type 2-23
distinct_d1.java example

program A-4
Driver interface 2-50
DriverManager interface 1-5, 2-4,

2-8, 2-10
DropDB.java example

program A-2
dropDB.java example program A-4

E
End-user formats for dates

precedence rules for 2-41
support for 2-34

Environment variables Intro-6
AUTOFREE A-2
CLASSPATH 1-13
CLIENT_LOCALE 2-11, 2-34,

2-42
DBANSIWARN 2-11
DBCENTURY 2-11, 2-41
DBDATE 2-11, 2-39, 2-41
DBSPACETEMP 2-11
DBUPSPACE 2-11
DB_LOCALE 2-11, 2-34, 2-42
DELIMIDENT 2-11
FET_BUF_SIZE 2-11, 3-6, A-2
GL_DATE 2-12, 2-35, 2-42
IFX_AUTOFREE 2-12, 3-8
INFORMIXCONRETRY 2-12
INFORMIXCONTIME 2-12
INFORMIXOPCACHE 2-12
INFORMIXSERVER 2-7, 2-8, 2-12
INFORMIXSTACKSIZE 2-12
LOBCACHE 2-13, 2-16, 3-6
NODEFDAC 2-13
OPTCOMPIND 2-13
OPTOFC 2-13, 3-8, A-3
PATH 2-13
PDQPRIORITY 2-14
PLCONFIG 2-14
PROTOCOLTRACE 3-4
PROTOCOLTRACEFILE 3-4
PSORT_DBTEMP 2-14
PSORT_NPROCS 2-14
2 IBM Informix JDBC Driver Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
specifying 2-7, 2-9
supported 2-11
TRACE 3-4
TRACEFILE 3-4
USEV5SERVER 2-14

en_us.8859-1 locale Intro-5
Eras in date formats 2-37
Errors 2-31, 2-32
Escape syntax 2-26
Establishing a connection 2-3
Examples

autofree.java 3-8, A-2
ByteType.java 2-18, 2-20, A-2
CreateDB.java A-2
createDB.java A-4
createTypes.java A-4
DBCENTURYSelect.java A-2
DBConnection.java 2-8, A-2
DBDATESelect.java A-2
DBMetaData.java A-2
demo1.java A-3
demo2.java A-3
demo3.java A-3
demo4.java A-3
demo5.java A-3
distinct_d1.java A-4
DropDB.java A-2
dropDB.java A-4
GLDATESelect.java A-2
Interval.java 2-21, A-2
large object data types 2-16, 2-19
LOCALESelect.java A-2
MultiRowCall.java A-2
OptimizedSelect.java A-2
optofc.java 2-10, 3-8, A-3
PropertyConnection.java A-3
RSMetaData.java A-3
SimpleCall.java A-3
SimpleConnection.java A-3
SimpleSelect.java A-3
TextType.java 2-19, 2-21, A-3
udt_d1.java A-4

executeQuery() method 2-25
executeUpdate() method 2-8, 2-19
execute() method 2-24, 2-53

F
FET_BUF_SIZE environment

variable 2-11, 3-6, A-2
File interface 2-19
FileInputStream interface 2-19
Files

IfxJDBCProxy.class 1-7, 2-51
java.io 2-33
java.text 2-33
java.util 2-33
SessionMgr.class 1-7, 2-51

Firewalls and database access 2-51
Formatting directives for

dates 2-35, 2-37

G
getBoolean() method 2-23
getBytes() method 2-47
getCatalogName() method 2-53
getCatalogs() method 2-15
getConnection() method 2-4, 2-8,

2-10
getErrorCode() method 2-31
getJDBCVersion() method 2-50
getMajorVersion() method 2-50
getMessage() method 2-31
getMinorVersion() method 2-50
getSchemaName() method 2-53
getSchemas() method 2-15
getSerial8() method 2-49
getSerial() method 2-49
getString() method 2-21, 2-23, 2-38,

2-40, 2-47
getTableName() method 2-53
getText() method 2-46
getUnicodeStream() method 2-53
getXXX() method 2-25, 2-29
GLDATESelect.java example

program A-2
Global Language Support

(GLS) Intro-5, 2-33
GL_DATE environment

variable 2-12, 2-35, 2-42

H
Host names, setting in database

URLs 2-6
HTTP proxy 2-51

I
Icons

Important Intro-7
platform Intro-7
Tip Intro-7
Warning Intro-7

IfxDriver class 2-4
ifxjdbc-g.jar file 1-6, 1-14, 3-3
IfxJDBCProxy class 2-51, 2-52
IfxJDBCProxy.class file 1-7, 2-51
ifxjdbc.jar file 1-6, 1-14
IFX_AUTOFREE environment

variable 2-12, 3-8
Important paragraphs, icon

for Intro-7
Industry standards, compliance

with Intro-10
Informix JDBC Driver

contents of 1-6
installing interactively 1-7
installing silently 1-10
loading 2-4
overview of 1-6
registering 2-4
tracing 3-4
uninstalling 1-12
using debug version of 3-3
using in an applet 1-14, 2-4
using in an application 1-13

INFORMIXCONRETRY
environment variable 2-12

INFORMIXCONTIME
environment variable 2-12

INFORMIXOPCACHE
environment variable 2-12

INFORMIXSERVER environment
variable 2-7, 2-8, 2-12

INFORMIXSTACKSIZE
environment variable 2-12

InputStream interface 2-16
Index 3

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
InputStreamReader() method 2-46,
2-47

Inserting date values 2-37, 2-40
Installing Informix JDBC

Driver 1-7, 1-10
Interfaces

CallableStatement 2-15
Connection 2-25, 2-48
DatabaseMetaData 2-14, 2-50
Driver 2-50
DriverManager 1-5, 2-4, 2-8, 2-10
File 2-19
FileInputStream 2-19
InputStream 2-16
PreparedStatement 2-15, 2-25
ResultSet 2-15, 2-24, 2-25, 2-29,

3-8
ResultSetMetaData 2-15
Statement 2-8, 2-15, 3-8
Types 2-27, 2-49

Internationalization 2-33 to 2-48
INTERVAL data type 2-21
Interval.java example

program 2-21, A-2
IP address, setting in database

URL 2-6
isDefinitelyWriteable()

method 2-54
ISO 8859-1 code set Intro-5
isReadOnly() method 2-53
isWriteable() method 2-54

J
JAR files

ifxjdbc-g.jar 1-6, 1-14, 3-3
ifxjdbc.jar 1-6, 1-14

jar utility 1-14
Java virtual machine (JVM) 1-13
javac, Java compiler 1-6
JavaSoft 1-3, 1-14
java.io file 2-33
java.text file 2-33
java.util file 2-33
JDBC API 1-3, 1-4
JDBC driver, general 1-5

L
Limitations and restrictions of

Informix JDBC Driver 2-53
Loading Informix JDBC Driver 2-4
LOBCACHE environment

variable 2-13, 2-16, 3-6
Locale class 2-33
Locales

assumptions about Intro-5
client, specifying 2-34
database, specifying 2-34
synchronizing with code sets 2-33
table of 2-45

LOCALESelect.java example
program A-2

Localization 2-33
LVARCHAR data type 2-23, 2-28

M
Mapping between Informix and

JDBC API data types 2-26
Message class 2-32
Metadata, accessing database 2-14
Methods

cancel() 2-53
Class.forName() 2-4
close() 2-24
executeQuery() 2-25
executeUpdate() 2-8, 2-19
execute() 2-24, 2-53
getBoolean() 2-23
getBytes() 2-47
getCatalogName() 2-53
getCatalogs() 2-15
getConnection() 2-4, 2-8, 2-10
getErrorCode() 2-31
getJDBCVersion() 2-50
getMajorVersion() 2-50
getMessage() 2-31
getMinorVersion() 2-50
getSchemaName() 2-53
getSchemas() 2-15
getSerial8() 2-49
getSerial() 2-49
getString() 2-21, 2-23, 2-38, 2-40,

2-47

getTableName() 2-53
getText() 2-46
getUnicodeStream() 2-53
getXXX() 2-25, 2-29
InputStreamReader() 2-46, 2-47
isDefinitelyWriteable() 2-54
isReadOnly() 2-53
isWriteable() 2-54
next() 2-19, 2-25
OutputStreamWriter() 2-46, 2-47
prepareStatement() 2-25
put() 2-10
registerDriver() 2-4
registerOutParameter() 2-53
setAsciiStream() 2-17
setAutoCommit() 2-48
setBinaryStream() 2-17
setBoolean() 2-23
setCatalog() 2-53
setMaxFieldSize() 2-53
setObject() 2-25
setQueryTimeout() 2-53
setReadOnly() 2-53
setString() 2-21, 2-23
setUnicodeStream() 2-53

MultiRowCall.java example
program A-2

N
Name-value pairs of database

URL 2-7
Native SQL date formats 2-38, 2-40
next() method 2-19, 2-25
NODEFDAC environment

variable 2-13
Nonnative SQL date formats 2-38,

2-40

O
ODBC 1-5
Opaque data type 2-23
OPTCOMPIND environment

variable 2-13
OptimizedSelect.java example

program A-2
4 IBM Informix JDBC Driver Programmer’s Guide

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
OPTOFC environment
variable 2-13, 3-8, A-3

optofc.java example program 2-10,
3-8, A-3

OutputStreamWriter()
method 2-46, 2-47

P
Passwords

URL syntax of 2-7
PATH environment variable 2-13
PDQPRIORITY environment

variable 2-14
Performance 3-6
Platform icons Intro-7
PLCONFIG environment

variable 2-14
Port numbers, setting in database

URL 2-6
Precedence rules for date

formats 2-41
PreparedStatement interface 2-15,

2-25
prepareStatement() method 2-25
Properties class 2-10
Property lists 2-10
PropertyConnection.java example

program A-3
PROTOCOLTRACE environment

variable 3-4
PROTOCOLTRACEFILE

environment variable 3-4
Proxy server 2-51
PSORT_DBTEMP environment

variable 2-14
PSORT_NPROCS environment

variable 2-14
put() method 2-10

Q
Querying the database 2-15

R
registerDriver() method 2-4

Registering Informix JDBC
Driver 2-4

registerOutParameter()
method 2-53

Remote database access 2-51
Remote method invocation

(RMI) 2-52, A-1, A-2
Restrictions and limitations of

Informix JDBC Driver 2-53
ResultSet class 2-38, 2-40
ResultSet interface 2-15, 2-24, 2-25,

2-29, 3-8
ResultSetMetaData interface 2-15
Retrieving

database names 2-15
date values 2-38, 2-40
Informix error message text 2-32
user names 2-15
version information 2-50

RMI 2-52, A-1, A-2
RSMetaData.java example

program A-3

S
Schemas, Informix JDBC Driver

interpretation 2-15
SERIAL data type 2-49
SERIAL8 data type 2-49
Servlets 2-51, 2-52
SessionMgr class 2-51
SessionMgr.class file 1-7, 2-51
setAsciiStream() method 2-17
setAutoCommit() method 2-48
setBinaryStream() method 2-17
setBoolean() method 2-23
setCatalog() method 2-53
setMaxFieldSize() method 2-53
setObject() method 2-25
setQueryTimeout() method 2-53
setReadOnly() method 2-53
setString() method 2-21, 2-23
Setting

autocommit 2-48
properties 2-10
the CLASSPATH environment

variable 1-13, 1-14
setUnicodeStream() method 2-53

setup.class class file 1-6, 1-8, 1-9,
1-10, 1-11

SimpleCall.java example
program A-3

SimpleConnection.java example
program A-3

SimpleSelect.java example
program A-3

Specifying
environment variables 2-7, 2-9
the client locale 2-34
the database locale 2-34

SQL date formats
native 2-38, 2-40
nonnative 2-38, 2-40

SQLException class 2-30, 2-32
Statement interface 2-8, 2-15, 3-8
Strings, representing dates

using 2-38
Supported environment

variables 2-11
Supported getXXX() methods 2-29
Syntax of Database URL 2-5
sysmaster database 2-14
systables catalog

and code set conversion 2-43,
2-45

and metadata 2-15

T
TEXT data type

caching 3-6
code set conversion for 2-47
examples for

data inserts and updates 2-16
data retrieval 2-19

extensions for 2-15
TextType.java example

program 2-19, 2-21, A-3
Threads, multiple, and

concurrency 2-24
Tip icons Intro-7
TRACE environment variable 3-4
TRACEFILE environment

variable 3-4
Tracing 3-4
Transactions, handling 2-48
Index 5

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Tuple buffer 2-11, 3-6
Types interface 2-27, 2-49

U
udt_d1.java example program A-4
Unicode

and internationalization
APIs 2-33

and the client code set 2-46
and the database code set 2-43

Uninstalling Informix JDBC
Driver 1-12

URLs
database 2-5
for a proxy server 2-51

User names, setting in database
URLs 2-7

USEV5SERVER environment
variable 2-14

Using debug version of Informix
JDBC Driver 3-3

Using Informix JDBC Driver
in an applet 1-14, 2-4
in an application 1-13

Using INFORMIX-OnLine 5.x
database servers 2-14

Using INFORMIX-SE 5.x database
servers 2-14

Using the Informix serial data
types 2-49

Utilities, jar 1-14

V
Version class 2-51
Version, of Informix JDBC

Driver 2-50

W
Warning icons Intro-7

X
X/Open compliance level Intro-10
6 IBM Informix JDBC Driver Programmer’s Guide

	Informix Online Documentation
	Table of Contents
	Introduction
	In This Introduction
	About This Manual
	Organization of This Manual
	Material Not Covered
	Types of Users
	Software Dependencies
	Assumptions About Your Locale

	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Comment Icons
	Platform Icons

	Additional Documentation
	Printed Documentation
	On-Line Documentation
	Vendor-Specific Documentation

	Compliance with Industry Standards
	Informix Welcomes Your Comments

	Getting Started
	In This Chapter
	What Is JDBC?
	What Is a JDBC Driver?
	Overview of Informix JDBC Driver
	Installing the Driver
	Interactive Installation
	Silent Installation

	Uninstalling the Driver
	Using the Driver in an Application
	Using the Driver in an Applet

	Programming with Informix JDBC Driver
	In This Chapter
	Establishing a Connection
	Loading Informix JDBC Driver
	Creating a Connection
	Format of Database URLs
	Connecting from Trusted Clients
	Database Versus Database Server Connections
	Specifying Environment Variables with the Properties Class
	Supported Informix Environment Variables

	Accessing Database Metadata
	Querying the Database
	Manipulating Informix Large Object Data Types
	Caching Large Objects
	Examples

	Manipulating Informix INTERVAL Data Types
	Manipulating Other Data Types
	Informix-Specific Information About Querying a Database
	Example of Sending a Query to an Informix Database
	Escape Syntax

	Mapping Data Types
	Mapping Between Informix and JDBC Data Types
	Supported ResultSet.getXXX() Methods

	Handling Errors
	Using the SQLException Class
	Retrieving Informix Error Message Text

	Internationalization
	JDK 1.1 and 1.2 Internationalization Support
	Support for Informix GLS Variables
	Support for End-User Formats
	GL_DATE Variable
	DBDATE Variable
	DBCENTURY Variable

	Precedence Rules Regarding DATE Value End-User Formats
	Support for Code Set Conversion
	Unicode to Database Code Set
	Unicode to Client Code Set
	Connecting to a Database with Non-ASCII Characters
	Code Set Conversion for TEXT Data Types

	Handling Transactions
	Other Informix Extensions to the JDBC API
	Using the Informix SERIAL and SERIAL8 Data Types
	Obtaining Driver Version Information

	Using an HTTP Proxy Server
	Restrictions and Limitations

	Troubleshooting
	In This Chapter
	Debugging Your JDBC API Program
	Using the Debug Version of the Driver
	Turning on Tracing

	Performance Issues
	Using the FET_BUF_SIZE Environment Variable
	Memory Management of Large Objects
	Reducing Network Traffic

	Sample Code Files
	Glossary
	Error Messages
	Index

